

Haydon Kerk Motion Solutions : 203 756 7441 Pittman Motors : 267 933 2105

www.HaydonKerkPittman.com

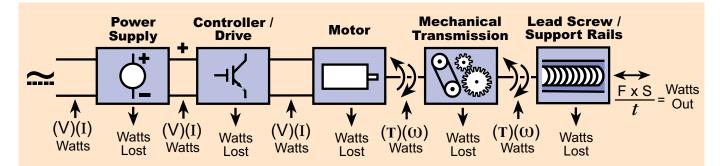
Kerk PITTMAN

SYMBOLS AND UNITS

Symbol	Description	Units
а	linear acceleration	m/s ²
a	angular acceleration	rad/s ²
a_{in}	angular acceleration	rad/s ²
$a_{\rm out}$	angular acceleration	rad/s ²
α	temperature coefficient	/°C
D_V	viscous damping factor	Nm s/rad
F	force	Ν
Fa	linear force required during acceleration $(F_J + F_f + F_g)$	N
F_{f}	linear force required to overcome friction	Ν
F_g	linear force required to overcome gravity	N
F_J	linear force required to overcome load inertia	Ν
g	gravitational constant (9.8 m/s ²)	m/s ²
I	current	А
\mathbf{I}_{LR}	locked rotor current	А
Io	no-load current	А
\mathbf{I}_{PK}	peak current	А
\mathbf{I}_{RMS}	RMS current	А
J	inertia	Kg-m ²
$\mathbf{J}_{\scriptscriptstyleB}$	inertia of belt	Kg-m ²
\mathbf{J}_{GB}	inertia of the gear box	Kg-m ²
\mathbf{J}_{in}	reflected inertia at system input	Kg-m ²
\mathbf{J}_{out}	reflected inertia at system output	Kg-m ²
\mathbf{J}_{P1}	inertia of pully 1	Kg-m ²
$\mathbf{J}_{_{P2}}$	inertia of pully 2	Kg-m ²
\mathbf{J}_{s}	lead screw inertia	Kg-m ²
K _E	voltage constant	V/rad/s
К _(f)	K_{E} or K_{T} (final"hot")	Nm/A or V/(rad/s)
K _(i)	K_{E} or K_{T} (initial "cold")	Nm/A or V/(rad/s)
K _m	motor constant	Nm/√w
Κ _τ	torque constant	Nm/A
L	screw lead	m/rev
m	mass	Kg
N	gear ratio	n/a
η	efficiency	n/a
n	speed	RPM
n _o	no load speed	RPM
n _{PK}	peak speed	RPM
θ	load orientation (horizontal = 0° , vertical = 90°)	degrees
Θ_{a}	ambient temperature	°C
Θ_f	motor temperature (final"hot")	°C
Θ_i	motor temperature (initial "cold")	°C
Θ_{m}	motor temperature	°C
Θ_r	motor temperature rise	°C
Θ_{rated}	rated motor temperature	°C

Symbol	Description	Units
Р	power	W
P_{avg}	average power	W
P_{CV}	power required at constant velocity	W
P_{in}	power required at system input	W
Ploss	dissipated power	W
P_{max}	maximum power	W
P _{max(f)}	maximum power (final"hot")	W
P _{max(i)}	maximum power (initial "cold")	W
Pout	output power	W
P _{PK}	peak power	W
R _m	motor regulation	RPM/Nm
R _{mt}	motor terminal resistance	Ω
R _{mt(f)}	motor terminal resistance (final"hot")	Ω
R _{mt(i)}	motor terminal resistance (initial "cold")	Ω
R _{th}	thermal resistance	°C/W
r	radius	m
S	linear distance	m
t	time	S
Т	torque	Nm
Т _а	torque required to overcome load inertia	Nm
T _{a (motor)}	torque required at motor shaft during acceleration	Nm
T _c	continuous rated motor torque	Nm Nm
T _{CF} T _d	coulomb friction torque reverse torque required for deceleration	Nm
\mathbf{T}_{D}	drag / preload torque	Nm
\mathbf{T}_{f}	torque required to overcome friction	Nm
Tg	torque required to overcome gravity	Nm
Tg T _{in}	torque required at system input	Nm
T _{LR}	locked rotor torque	Nm
T _{LR} T _{out}	torque required at system output	Nm
T _{RMS}	RMS torque required over the total duty cycle	Nm
T _{RMS} (motor)	RMS torque required at the motor shaft	Nm
μ	coefficient of friction	n/a
V _T	motor terminal voltage	V
V _{bus}	DC drive bus voltage	V
v	linear velocity	m/s
\mathcal{V}_{f}	final linear velocity	m/s
Vi	initial linear velocity	m/s
\mathcal{V}_{PK}	peak linear velocity	m/s
W	energy	J
ω	angular velocity	rad/s
$\omega_{\sf in}$	angular velocity at system input	rad/s
ω_{out}	angular velocity at system output	rad/s
ω°	no load angular velocity	rad/s
Ю _{РК}	peak angular velocity	rad/s

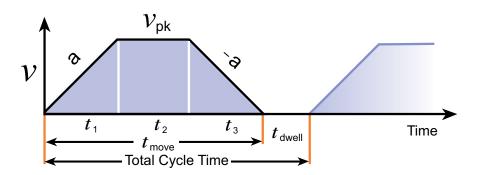
www.HaydonKerkPittman.com


Haydon Kerk Motion Solutions: 203 756 7441/Pittman Motors: 267 933 2105

Any motion system should be broken down into its individual components.

MOTION SYSTEM FORMULAS

ADVANCED MOTION SOLUTIONS


Haydon [kerk] PITTMAN

All analysis begins with the linear motion profile of the output and the force required to move the load.

Motion Profiles

1/3 1/3 1/3 Trapazoidal Motion Profile

Optimized for minimum power

$$t_1 = t_2 = t_3$$

 $V_{PK} = \frac{3S}{2t}$
 S is the total move distance
 t is the total move time
Area under profile curve represents distance moved

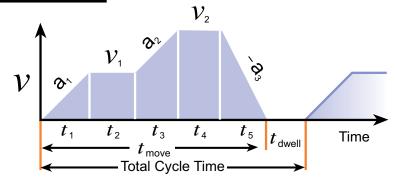
2 **Maydon kerk** PITTMAN

Optimized for <u>minimum</u> acceleration slope

Maydon (kerk)[®] PITTMAN

$$t_1 = t_2$$
$$V_{\rm PK} = \frac{2S}{t}$$

S is the <u>total</u> move distance t is the <u>total</u> move time


Area under profile curve represents distance moved

Move Profile | Peak Velocity (V_{PK}) | Acceleration (a)

1/ ₃ 1/ ₃ 1/ ₃	*	•
Triangular	↑	+

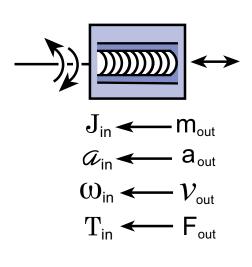
Complex Motion Profile

Linear Motion Formulas (1) $S = \frac{V_f - V_i}{2}t$ (2) $V_f = V_i + at$ (3) $S = V_i t + \frac{1}{2} at^2$ (4) $2aS = V_f^2 - V_i^2$ (5) $a = \frac{(V_f - V_i)}{(t_f - t_i)} = \frac{\Delta V}{\Delta t}$ Linear to Rotary Formulas - through a Lead Screw $\mathcal{Q} = \frac{2\pi a}{L} = rad/s^2$ (1) $\mathcal{Q} = \frac{2\pi V}{L} = rad/s$ (2) $\mathcal{Q} = \frac{2\pi V}{L} = rad/s$ (3) $\mathcal{Q} = \frac{2\pi V}{L} = rad/s$ (4) $\mathcal{Q} = \frac{60V}{L} = RPM$

3

3 known quantities are needed to solve for the other 2. Each segment calculated individually.

ЛМЕТЕК

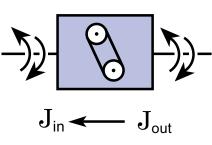

ADVANCED MOT

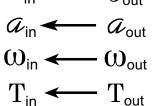
MOTION SYSTEM FORMULAS

Inertia, Acceleration, Velocity, and Required Torque

Lead Screw System

Whaydon kerk PITTMAN




$J_{in} = m \left(\frac{L}{2\pi}\right)^2 \mathbf{X} \cdot \frac{1}{\eta} + J_s$	Kg-m ²
$\mathcal{A}_{in} = \frac{2 \pi a}{L}$	rad/sec ²
$\omega_{\rm in} = \frac{2 \pi v}{L}$	rad/sec
$T_{in} = T_a + T_f + T_g + T_D$	N-m
$T_a = J_{in} \mathcal{A}_{in}$	N-m
$T_f = \frac{\cos \emptyset m g \mu L}{2 \pi \eta}$	N-m
$T_g = \frac{\sin \emptyset mgL}{2\pi n}$	N-m

$$T_D = drag/preload N-m$$

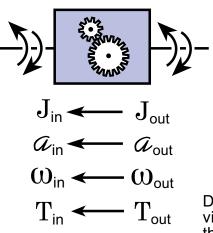
manufacturer's data

Belt and Pulley System

$$\begin{split} J_{\text{in}} &= \left(\frac{J_{\text{out}}}{N^2}\right) \, \textbf{X} \, \frac{1}{\eta} + J_{\text{P1}} + J_{\text{P2}} + J_{\text{B}} \, \text{Kg-m}^2 \\ & \quad \mathcal{Q}_{\text{in}} &= \left(\mathcal{Q}_{\text{out}}\right) \! \left(N \right) \qquad \text{rad/sec}^2 \\ & \quad \boldsymbol{\omega}_{\text{in}} &= \left(\boldsymbol{\omega}_{\text{out}}\right) \! \left(N \right) \qquad \text{rad/sec} \\ & \quad T_{\text{in}} &= \frac{T_{\text{out}}}{N} \, \textbf{X} \, \frac{1}{\eta} \qquad \text{N-m} \end{split}$$

For a 1st approximation analysis, J_{P1} , J_{P2} , and J_B can be disregarded. For higher precision, pulley and belt inertias should be included, as well as the reflected inertia of these components.

METEK®


ADVANCED MOTION SOLUTIONS

4 **Maydon kerk** PITTMAN

MOTION SYSTEM FORMULAS

Gearbox System

Kerk PITTMAN

$J_{\text{in}} = \left(\frac{J_{\text{out}}}{N^2}\right) \mathbf{X} \frac{1}{\eta} + J_{\text{GB}}$	Kg-m ²
$\mathcal{A}_{in} = (\mathcal{A}_{out})(N)$	rad/sec ²
$\omega_{in} = (\omega_{out})(N)$	rad/sec
$T_{in} = \frac{T_{out}}{N} \times \frac{1}{\eta} + T_D$	N-m
arous can be significant (T.) denon	ling on the

Drag torque can be significant (T_D) depending on the viscosity of the lubricant. For a first approximation analysis, this can be left out.

Gearbox inertia may be found in manufacturer's data sheets, or calculated using gear dimensions and materials / mass.

Mechanical Power and RMS Torque

ADVANCED MOTION SOLUTIONS

Linear Power =
$$\frac{FS}{t}$$
 = watts

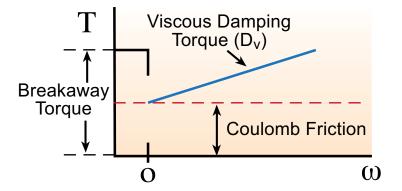
Rotary Power =
$$T \mathbf{O}$$
 = watts

$$T_{RMS} = \sqrt{\frac{T_1^2 t_1 + T_2^2 t_2 + T_3^2 t_3 \dots + T_n^2 t_n}{t_1 + t_2 + t_3 \dots + t_n + t_{dwell}}}$$

DC Motor Formulas

MOTION SYSTEM

FORMULAS



ADVANCED MOTION SOLUTIONS

Motor No Load Speed

$$n_o = 9.5493 \text{ x } \frac{V_T - (I_O \text{ x } R_{mt})}{K_E}$$

Assuming I_O is very small, it can be ignored for a quick approximation of motor no-load speed. If more accurate results are needed, I_O will also need to be adjuisted based on the motor Viscous Damping Factor (D_v). As the no-load speed increases with increased terminal voltage on a given motor, I_O will also increase based on the motor's D_v value found on the manufacturer's motor data sheet.

Motor Locked Rotor Current / Locked Rotor Torque

$$\mathbf{I}_{LR} = \frac{V_{T}}{R_{m}}$$

$$\mathbf{T}_{LR} = \mathbf{I}_{LR} \times \mathbf{K}_{T}$$
$$= \frac{\mathbf{V}_{T}}{\mathbf{R}_{mt}} \times \mathbf{K}_{T}$$

Motor Regulation

- Theoretical using motor constants

$$R_m = 9.5493 \times \frac{R_{mt}}{K_E \times K_T}$$

- Regulation calculated using test data

$$R_{m} = \frac{n_{o}}{T_{LR}}$$

6

Haydon kerk PITTMAN

Motor Power Relationships

- Watts lost due to winding resistance

$$P_{loss} = I^2 \times R_{mt}$$

- Output power at any point on the motor curve

$$P_{out} = \omega \times T$$

- Motor maximum output power

$$P_{max}$$
 = 0.25 x Ω_{o} x T_{LR}

- Motor maximum output power (Theoretical)

$$P_{max} = 0.25 \text{ x } \frac{V_{T}^{2}}{R_{mt}}$$

Temperature Effects on Motor Constants

- Change in terminal resistance

$$R_{mt(f)} = R_{mt(i)} \times \left[1 + \alpha_{conductor} (\Theta_f - \Theta_i) \right]$$
$$\alpha_{conductor} = 0.0040/^{\circ}C (copper)$$

In the case of a mechanically commutated motor with graphite brushes, this analysis will result in a slight error because of the negative temperature coefficient of carbon. For estimation purposes, this can be ignored, but for a more rigorous analysis, the behavior of the brush material must be taken into account. This is not an issue when evaluating a brushless dc motor.

– Change in torque constant and voltage constant ($K_T = K_E$)

$$\mathsf{K}_{(f)} = \mathsf{K}_{(i)} \times \left[1 + \mathcal{O}_{\mathrm{magnet}} \left(\Theta_{f} - \Theta_{i} \right) \right]$$

Magnetic Material	Ct _{magnet} (/°C)	$\Theta_{\sf max}(^{\circ}{\sf C})$
Ceramic	-0.0020/°C	300°C
SmCo	-0.0004/°C	300°C
AlNiCo	-0.0002/°C	540°C
NdFeB	-0.0012/°C	150°C

The magnetic material values above represent average figures for particular material classes and estimating performance. If exact values are needed, consult data sheets for a specific magnet grade.

MOTION SYSTEM

Motor Brush Resistance

For PMDC motors (brush type) brush drop can be approximated as a constant resistance connected in series with the armature winding. This series resistance is included in the R_{mt} factor found on manufacturer's data sheet.

Brush Material	Resistance
Copper graphite	0.2 to 0.4 Ω
Silver graphite	0.2 to 0.4 Ω
Electrographite	0.8 to 1.0 Ω

DC Motor Thermal Resistance and Temperature Rise

- Thermal resistance

$$R_{th} = \frac{\text{Temperature Rise }^{\circ}C}{\text{Machine Losses W}}$$

- Final motor temperature

$$\Theta_{\rm m} = \Theta_{\it r} + \Theta_{\rm a}$$

- Motor temperature rise*

$$\Theta_{r} = R_{th} \times I^{2} \times R_{mt}$$

$$- OR - R_{th} \times I^{2} \times R_{mt}$$

$$\Theta_{r} = \frac{R_{th} \times I^{2} \times R_{mt}}{1 - (R_{th} \times I^{2} \times R_{mt} \times OL)}$$

$$- OR - R_{th} \times \left(\frac{T_{c}}{K_{m}}\right)^{2}$$

*Use caution when applying these formulas. Depending on the conditions used to determine motor specifications, only one formula should be used. Contact Appications Engineering for questions.

8 **Maydon kerk** PITTMAN

Motor Brush Resistance

For PMDC motors (brush type) brush drop can be approximated as a constant resistance connected in series with the armature winding. This series resistance is included in the R_{mt} factor found on manufacturer's data sheet.

Brush Material	Resistance	
Copper graphite	0.2 to 0.4 Ω	
Silver graphite	0.2 to 0.4 Ω	
Electrographite	0.8 to 1.0 Ω	

DC Motor Thermal Resistance and Temperature Rise

- Thermal resistance

$$R_{th} = \frac{\text{Temperature Rise }^{\circ}\text{C}}{\text{Machine Losses W}}$$

- Final motor temperature

$$\Theta_{\rm m} = \Theta_{\it r} + \Theta_{\rm a}$$

- Motor temperature rise*

$$\Theta_{r} = R_{th} \times I^{2} \times R_{mt}$$

$$- OR - R_{th} \times I^{2} \times R_{mt}$$

$$\Theta_{r} = \frac{R_{th} \times I^{2} \times R_{mt}}{1 - (R_{th} \times I^{2} \times R_{mt} \times OL)}$$

$$- OR - R_{th} \times \left(\frac{T_{c}}{K_{m}}\right)^{2}$$

*Use caution when applying these formulas. Depending on the conditions used to determine motor specifications, only one formula should be used. Contact Appications Engineering for questions.

Stepper Motor Formulas

- Motor step angle

Step $\emptyset = \frac{180}{(\text{phases})(\text{rotor teeth})}$

- SPS (steps/second) to RPM (revolutions/minute)

ADVANCED MOTION SOLUTION

$$\mathsf{RPM} = \frac{(\mathsf{SPS}) \times (\mathsf{Step} \, \emptyset)}{6}$$

<u>MOTION SYSTEM</u>

- RPM (revolutions/minute) to SPS (steps/second)

$$SPS = \frac{(RPM) \times 6}{(Step \emptyset)}$$

- Travel per step

m/step =
$$\frac{L}{\text{positions/rev}}$$

Maximum *accuracy* of a step motor system has nothing to do with maximum *resolution* of a step motor system. Maximum accuracy is always based on the accuracy of 1 full step, but maximum resolution is based on all system components including lead screw, encoder, stepper motor and step mode on the controller.

- Overdriving capability

Required "Time Off" using an L/R drive (constant voltage drive)

Time Off = (Time On) $\frac{(\text{Applied Voltage})^2}{(\text{Rated Voltage})}$ – Time On

Required "Time Off" using a chopper drive (constant current drive)

Time Off = (Time On) $\frac{(\text{Applied Current})^2}{(\text{Rated Current})}$ – Time On

It is not unusual for a customer to drive Haydon Kerk stepper motors beyond their rated power to obtain the most force in the smallest package size. Precautions must be taken to prevent the motor from exceeding its maximum temperature. The "on" time should not exceed 2 - 3 minutes. As general rule of thumb, driving a motor at 2.5 to 3x its rated voltage or current may result in wasted energy and erratic behavior due to saturation.

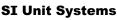
Special notes for can-stack motors:

- more easily saturated due to less active material (steel)
- · more iron losses due to unlaminated steel

10 **Haydon** (kerk) **PITTMAN**

Increase In	Affects	Impact	Increase In
Screw	Critical speed	\checkmark	End Mounti
Length	Compression load	\checkmark	Rigidity
	Critical speed		
	Inertia		Load
Screw	Compression load		
Diameter	Stiffness		Preload
	Spring Rate		
	Load capacity		Nut length
	Drive torque		Hutiongin
Lead	Angular velocity	\checkmark	<u>Examples:</u>
Leau	Load cpacity		An INCREAS
	Positioning accuracy	\mathbf{V}	An INCREASE

ADVANCED MOTION SOLUTIONS


Lead Screw Performance Characteristics

Increase In	Affects	Impact
End Mounting	Critical speed	
Rigidity	Compression load	
	System stiffness	
Load	Life	•
	Positioning accuracy	
Preload	System stiffness	
	Drag torque	
Nut length	Load capacity	
	Stiffness	

SE (1) in screw length results in a $E(\mathbf{V})$ in critical speed.

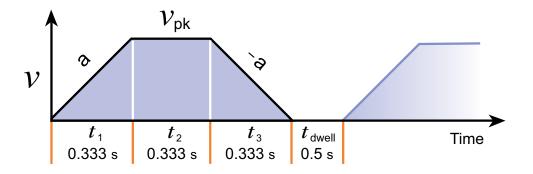
An INCREASE in screw diameter results in an INCREASE in critical speed.

SI Unit Systems			
Quantity	Name of Unit	Symbol	
Base Units			
Length	meter	m	
Mass	kilogram	Kg	
Time	second	s	
Electric current	ampere	A	
Thermodynamic temperature	kelvin	К	
Luminous intensity	candela	cd	
Amount of substance	mole	mol	
Derived Units			
area	square meter	m ²	
volume	cubic meter	m ³	
frequency	hertz	Hz s ⁻¹	
mass density (density)	kilogram per cubic meter	Kg/m ³	
speed, velocity	meter per second	m/s	
angular velocity	radian per second	rad/s	
acceleration	meter per second squared	m/s ²	
angular acceleration	radian per second squared	rad/s ²	
force	newton	N Kg-m/s ²	
pressure (mechanical stress)	pascal	Pa N/m ²	
kinematic viscosity	square meter per second	m²/s	
dynamic viscosity	newton-second per square meter	N-s/m ²	
work, energy, quantity of heat		J N-m	
power	watt	W J/s or N-m/s	
entropy	joule per kelvin	J/K	
specific heat capacity	joule per kilogram kelvin	J/Kg-K)	
thermal conductivity	watt per meter kelvin	W/(m-K)	

Kerk PITTMAN

AMETEK

ADVANCED MOTION SOLUTIONS


.

MOTION SYSTEM APPLICATION EXAM MPLE

Linear Motion Example

Data

Mass Move distance Move time Dwell time Motion profile Screw speed limit Load support Orientation Rotary to linear conversion		·	5.0 A peak
Ambient temperature	30°C	ew o min dameter 27:	
·			

Linear Velocity

$$\mathcal{V}_{PK} = \frac{3S}{2t} = \frac{(3)(0.2m)}{(2)(1.0 s)} = \frac{0.6m}{2 s} = \frac{0.3m}{s}$$

Linear Acceleration

$$a = \frac{v_f - v_i}{t} = \frac{0.3 \text{m/s} - 0 \text{ m/s}}{0.333 \text{ s}} = 0.901 \text{m/s}^2$$

1st step is to thoroughly understand system constraints and motion profile requirements.

12 Maydon kerk PITTMAN

Minimum screw lead to maintain < 1000 RPM shaft speed

AMETEK Advanced motion solutions

WHaydon kerk PITTMAN

$$L_{min} = \frac{60V_{PK}}{n} = \frac{(60)(0.3m/s)}{1000 \text{ rev/min}} = 0.018 \text{m/rev} = 18 \text{mm/rev}$$

Refer to Kerk screw chart - closest lead in an 8mm screw diameter is

20.32mm/rev =
$$0.02032 \text{ m/rev}$$

 $\eta = 0.86 \text{ free wheeling nut,}$
TFE coated screw
 $J_s = 38.8 \times 10^{-7} \text{ Kg-m}^2$

Other critical lead screw considerations

- Column loading
- Critical speed

$$\begin{array}{ccc} \mathcal{V}_{\mathsf{PK}} \longrightarrow \ \mathfrak{O}_{\mathsf{PK}} & \mathsf{m} \longrightarrow \mathrm{J} \\ a \longrightarrow \ \mathfrak{A} & \mathsf{F} \longrightarrow \mathrm{T} \end{array}$$

Linear to Rotary Conversion: Velocity

$$\Omega_{PK} = \frac{2 \pi V_{PK}}{L} = \frac{(2\pi)(0.3\text{m/s})}{0.02032 \text{ m/rev}} = 92.76 \text{ rad/s}$$

Linear to Rotary Conversion: Acceleration

Haydon kerk PITTMAN

ADVANCED MOTION SOLUTIONS

$$\alpha = \frac{2\pi a}{L} = \frac{(2\pi)(0.901 \text{ m/s}^2)}{0.02032 \text{ m/rev}} = 278.6 \text{ rad/s}^2$$

13

MOTION SYSTEM FORMULAS Linear to Rotary Conversion: Inertia

Haydon (kerk)[®] PITTMAN

$$J_{in} = m \left(\frac{L}{2\pi}\right)^{2} \mathbf{X} \cdot \frac{1}{\eta} + J_{s} = 9 \text{Kg} \left(\frac{0.02032 \text{ m}}{2\pi}\right)^{2} \mathbf{X} \cdot \frac{1}{0.86} + 38.8 \text{x} 10^{-7} \text{Kg-m}^{2}$$
$$= 10.95 \mathbf{X} \cdot 10^{-5} \text{Kg-m}^{2} + 38.8 \text{x} 10^{-7} \text{Kg-m}^{2}$$
$$= 11.34 \text{ x} \cdot 10^{-5} \text{Kg-m}^{2}$$

ADVANCED MOTION SOLUTIONS

Linear to Rotary Conversion: Torque $T_{in} = T_a + T_f + T_g + T_D$

$$T_{a} = J_{in} \mathcal{Q}_{in} = (11.34 \times 10^{-5} \text{Kg-m}^{2})(278.6 \text{ rad/s}^{2})$$

$$= \boxed{0.0316 \text{ Nm}}$$

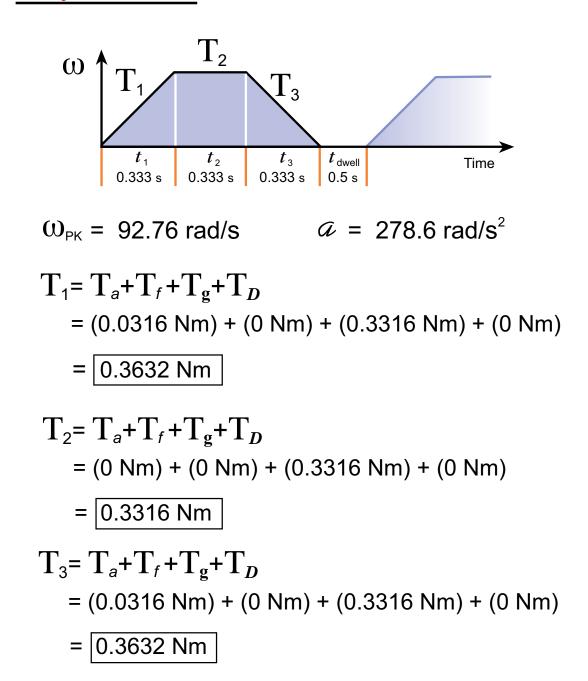
$$T_{f} = \frac{\cos \emptyset \text{mg}\mu L}{2\pi\eta} = \frac{(\cos 90)(9 \text{ Kg})(9.8 \text{m/s}^{2})(0.01)(0.02032 \text{m})}{2\pi (0.86)}$$

$$= \boxed{0 \text{ Nm}}$$

$$T_{g} = \frac{\sin \emptyset \text{mg} L}{2\pi\eta} = \frac{(\sin 90)(9 \text{ Kg})(9.8 \text{m/s}^{2})(0.02032 \text{m})}{2\pi (0.86)}$$

$$= \frac{1.792 \text{ Nm}}{5.404} = \boxed{0.3316 \text{ Nm}}$$

 $T_D = 0 \text{ Nm}$


Since a free-wheeling lead screw nut was used, there is no preload force. If an anti-backlash nut was used, T_D would be >0 due to preload force. Always reference manufacturer's data for more information.

14 **Haydon kerk** PITTMAN

 Rotary Motion Profile

Maydon (kerk)[®] PITTMAN

Maydon (kerk) PITTMAN

MOTION

APPLI

Lead Screw Input Requirements

Haydon kerk[®] **PITTMAN**[®]

ADVANCED MOTION SOLUTIONS

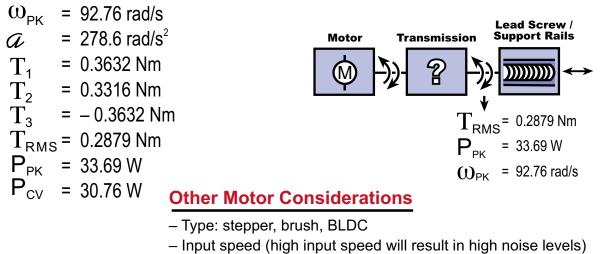
$$P_{PK} = (T_1)(\omega_{PK})$$

= (0.3632 Nm)(92.76 rad/s)
= 33.69 W
$$P_{CV} = (T_2)(\omega_{PK})$$

= (0.3316 Nm)(92.76 rad/s)
= 30.76 W

MOTION SYSTEM APPLICATION EXAMPLE

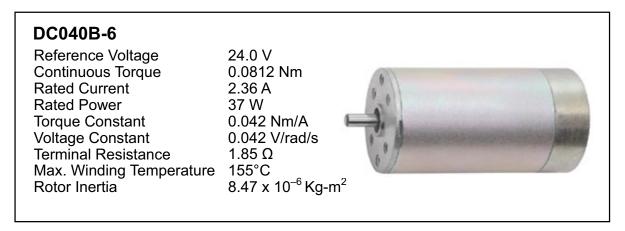
RMS Torque Requirement @ Lead Screw Input


$$T_{\rm RMS} = \sqrt{\frac{T_1^2 t_1 + T_2^2 t_2 + T_3^2 t_3}{t_1 + t_2 + t_3 + t_{\rm dwell}}}$$
$$= \sqrt{\frac{(0.3632\,{\rm Nm})^2 (0.333\,{\rm s}) + (0.3316\,{\rm Nm})^2 (0.333\,{\rm s}) + (-0.3632\,{\rm Nm})^2 (0.333\,{\rm s})}{0.333\,{\rm s} + 0.333\,{\rm s} + 0.333\,{\rm s} + 0.5\,{\rm s}}}$$
$$= \sqrt{\frac{0.0439 + 0.0366 + 0.0439}{1.5}} = \sqrt{\frac{0.0829}{1.5}}$$

Kerk PITTMAN

MOTION SYSTEM APPLICATION EXAMPLE

Load Parameters at the Lead Screw Shaft


- Total motor footprint
- Ambient temperature
- Environmental conditions
- Load-to-rotor inertia
- Encoder ready needed

Motor Selection

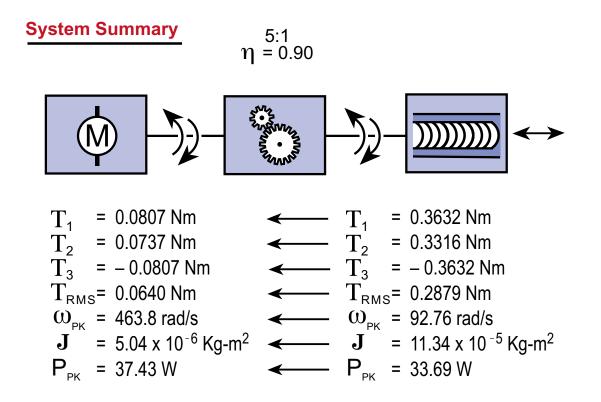
A direct-drive motor can be used, however, it would be large and expensive. For example, a DC057B-3 brush motor...

...would easily meet continuous torque and continuous speed, as well as a 1.8:1 load-to-rotor inertia. This motor, however, has significantly more output power than needed at 128 watts.

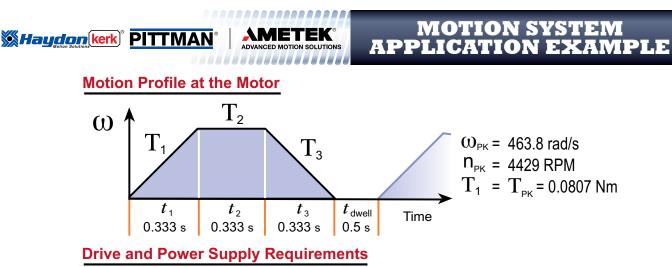
A smaller motor with a transmission would optimize the system. Look for a motor starting at a rated power around **40 watts**... Pittman DC040B-6

Gearbox / Transmission Selection

Maydon [kerk] PITTMAN


When selecting a reduction ratio, keep in mind that the RMS required torque at the motor shaft needs to fall below the continuous rated output torque of the motor.

MOTION SYSTEM


APPLICATION

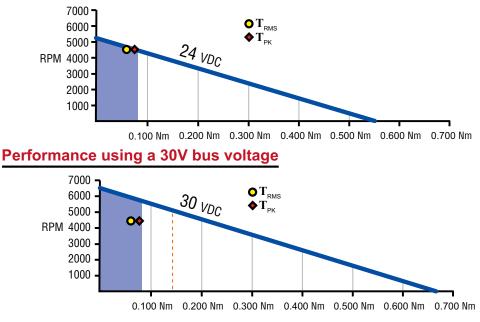
G30 A - Planetary Gearbox Maximum output load 2.47 Nm				1
T _{RMS(@ Lead Screw)}	Reduction	Efficiency	T _{RMS(@ Motor)}	4
0.2879 Nm	4:1	0.90	0.0798 Nm	0
0.2879 Nm	5:1	0.90	0.0640 Nm	
0.2879 Nm	6:1	0.90	0.0533 Nm	

A 5:1 gearbox would allow about a 27% safety margin between what the system requires and the continuous torque output of the motor.

ADVANCED MOTION SOLUTIONS

Peak Current Required

$$\mathbf{I}_{PK} = \frac{\mathbf{T}_{PK}}{K_{T}} + \mathbf{I}_{O} = \frac{0.0807 \text{ Nm}}{0.042 \text{ Nm/A}} + 0.180 \text{ A} = 2.10 \text{ A}$$


RMS Current Required

$$\mathbf{I}_{\text{RMS}} = \frac{\mathbf{T}_{\text{RMS}}}{K_{\text{T}}} + \mathbf{I}_{\text{O}} = \frac{0.0640 \text{ Nm}}{0.042 \text{ Nm/A}} + 0.180 \text{ A} = \boxed{1.70 \text{ A}}$$

Minimum bus Voltage Required

 $V_{bus} = \mathbf{I}_{PK} \mathbf{R}_{mt} + \omega_{PK} \mathbf{K}_{E} = (2.10 \text{ A})(1.85 \Omega) + (463.8 \text{ rad/s})(0.042 \text{ V/rad/s})$ = 3.89 V + 19.48 V = 23.37 V

Performance using 24V reference voltage

A 30 VDC bus will meet the application requirements as wells supply a margin of safety.

Will the motor meet the temperature rise caused by the application?

Haydon (kerk)[®] PITTMAN

AMETEK

ADVANCED MOTION SOLUTIONS

	Ambient temperature Θ_a = 30°CRated motor temperature Θ_{rated} = 155°CTemperature rise Θ_r = 76.38°CMotor temperature Θ_m = 106.38°C
Θ -	$R_{th} \times I_{RMS}^2 \times R_{mt}$
$\mathbf{O}_{\mathbf{r}}$ -	$\frac{1}{1 - (R_{th} \times I_{RMS}^2 \times R_{mt} \times 0.00392/°C)}$
-	11°C/ω x 1.70A² x 1.85Ω
-	$\frac{1}{1 - (11^{\circ}C/\omega \times 1.70A^{2} \times 1.85\Omega \times 0.00392/^{\circ}C)}$
:	$=\frac{58.81}{1-(0.23)} = \frac{58.81}{0.77} = \boxed{76.38^{\circ}C}$
Θ_{m} =	$= \Theta_r + \Theta_a = 76.38^{\circ}C + 30^{\circ}C = 106.38^{\circ}C$

NOW... ASK us the tough motion control questions *ONLINE*!

203 756 7441 1500 Meriden Road Waterbury, CT USA 06705

267 933 2105 534 Godshall Drive Harleysville, PA USA 19438

ADVANCED MOTION SOLUTIONS

MOTION SYSTEM

MPLE

APPLICATION

www.HaydonKerkPittman.com

@ All rights reserved. AMETEK Advanced Motion Solutions. No part of this document or technical information can be used, reproduced or altered in any form without approval or proper authorization from AMETEK, Inc and global affiliates.