

AMETEK®

Full Line Catalog

Lead Screw and Nut Assemblies Linear Actuators Linear Rail Systems

This document is for informational purposes only and should not be considered as a binding description of the products or their performance in all applications. The performance data shown depicts typical performance under controlled laboratory conditions. Actual performance will vary depending on the operating environment and application. AMETEK reserves the right to revise its products without notification. The noted characteristics represent standard products. For products designed to meet specific applications, contact Haydon Kerk Sales Department.

This catalog was produced for exclusive use by customers of Haydon Kerk products. No part of this book or technical information can be used, reproduced or altered in any form without approval or proper authorization from AMETEK, Inc., and its global affiliates. This document is intended to be a guide for products and services offered by the Haydon Kerk product group. Despite taking all precautions to avoid technical or typographical errors within the catalog some errors may exist. Because most of our products involve a high degree of accuracy and precision we strongly recommend that you contact a Haydon Kerk technical advisor for more details and specific application requirements.

AMETEK Haydon Kerk Pittman 1500 Meriden Road • Waterbury, CT 06705 USA www.haydonkerkpittman.com

2 **Haydon kerk** kerk

www.haydonkerkpittman.com

Table of Contents

Lead Screw and Nut Assemblies	. 4 – 72	G4 Series: High Performance	161 – 1
Materials	. 5	19000 Series (Ø 20 mm)	161 – 10
Lubrication / TFE Coatings	. 5	25000 Series (Ø 25 mm)	167 – 1
Quick Reference Guides	6 – 7	37000 Series (Ø 37 mm)	173 – 1
Lead Screw Nut Selection	. 6	New option available! 15000 Series (Ø 15 mm)	179 – 18
Lead Screw by Size	. 7	Z20000 Series (Ø 20 mm)	183 – 1
Terminology	. 8	New option available! Z26000 Series (Ø 26 mm)	188 – 1
Design and Engineering Data		AC (Alternating Current) Synchronous Actuators	192 – 1
Standard/Block Dimensional Tolerances		Hybrid	
Mechanical Properties		Can-Stack	
Grease Compatibility Chart		Rotary	
Anti-Backlash Nuts		Customization	
Anti-Backlash Technology		Multi-axis Motion Systems	
KHD Series		Z-Theta	
NTB Series, includes Mini Series		ZT04	
NTG Series, includes Mini Series		Motorized and Non-Motorized Linear Rails and Slides	
VHD Series		Mini Motorized Slides	
WDG Series		MiniSlide with Size 8 Hybrid Motor	
ZBA Series		MiniSlide with 20mm Can-Stack Motor	
ZBX Series, includes Mircro Series		Ball Guided Rails	
Free Wheeling and Specialty Nuts		BGS Series	
3DP Series		BGS Product Selection Chart	
BFW Series, includes Mini and Micro Series		Motorized BGS04	
Lead Screws		Motorized BGS06	
Diameter and Lead Codes		Motorized BGS08	
Screw Inertia Data		New product! EGS Series	
End Machining		Motorized EGS04	
Customization		Slide Guided Rails	
Stepper Motor Linear Actuators		RGS Series	
Terminology		Motorized RGS04	
Hybrid Linear Actuators		Non-Motorized RGS04	
21000 Series (Size 8) Single Stack		Motorized RGS06 and RGW06 Wide	
21000 Series (Size 8) Double Stack		Non-Motorized RGS06 and RGW06 Wide	
28000 Series (Size 11) Single Stack		Motorized RGS08	
28000 Series (Size 11) Double Stack		Non-Motorized RGS08	
35000 Series (Size 14) Single Stack	. 96 – 101	Motorized RGS10 and RGW10 Wide	
35000 Series (Size 14) Double Stack	. 102 – 106	Non-Motorized RGS10 and RGW10 Wide	267 – 2
43000 Series (Size 17) Single Stack	. 107 – 110	WGS Series	272 – 2
43000 Series (Size 17) Single Stack with IDEA Drive	. 111 – 114	Motorized WGS06	272 – 2
43000 Series (Size 17) Double Stack	. 115 – 117	Non-Motorized WGS06	280 – 2
43000 Series (Size 17) Double Stack with IDEA Drive	118 – 121	LRS Series	282 – 2
New product! 43000 Series (Size 17) MAX Single Stack	122 – 125	Motorized LRS04	282 – 2
New product! 43000 Series (Size 17) MAX Single Stack with IDEA Drive	. 126 – 129	Non-Motorized LRS04	2
New product! 43000 Series (Size 17) MAX Double Stack	. 130 – 132	SRA Screw Rail Linear Actuator - General Purpose	288 – 2
New product! 43000 Series (Size 17) MAX Double Stack with IDEA Drive	. 133 – 136	SRA 03, 04, 06, 08	288 – 2
57000 Series (Size 23) Single Stack	. 137 – 142	SRZ Screw Rail Linear Actuator - Anti-Backlash	290 – 2
57000 Series (Size 23) Double Stack	. 143 – 147	SRZ 03, 04, 06, 08	290 – 2
87000 Series (Size 34) Single Stack	. 148 – 152	Linear Guide Elements	292 – 2
Hybrid Stepper Motors: Optional Assemblies	. 153	SS - Spline Shaft	293 – 2
Dual Motion: Combined Linear and Rotary Actuator	. 154 – 159	SZ - Spline Shaft Anti-Backlash	293 – 2
35000 Series (Size 14) Dual Motion	. 155 – 156	GR - Linear Guide Rail	293 – 2
43000 Series (Size 17) Dual Motion	. 157 – 159	Linear Rail Checklist	
Can-Stack Linear Actuators	160 – 196	Customization	29
Custom assemblies also available. Contact our Application Engineers for ass	istance	Pittman Products	300 – 30
e: info.haydonkerk@ametek.com			

Lead Screw and Nut Assemblies

Kerk Lead Screw Assemblies are modified Acme thread forms optimized for performance and available in a broad range of lead screw diameters, leads and nut styles, custom designed for your application. Kerk lead screws are self-adjusting, maintenance-free and require no lubrication. Providing maximum accuracy, high reliability, smooth, quiet operation and low cost, Kerk lead screw assemblies are your best choice for high performance linear motion control.

Kerk Lead Screws

- Available in standard diameters from 5/64-in (2 mm) to 15/16-in (23 mm)
- Standard leads from .012-in to almost 4-in (0.30 mm to 92 mm) including native metric and left hand threads
- Custom sizes and leads can be special ordered
- Positional bi-directional repeatability (with Kerk anti-backlash nut) is within 50 micro-inches (1.25 micron) and standard lead accuracy is better than 0.0006-in./in. (mm/ mm)
- Standard lead accuracy of .0006 in/in, with up to .0001 in/in available on selected screws; Contact factory for availability
- Complete in-house manufacturing and quality control assure uniform and consistent products

Kerk Nuts

- Available in 7 standard anti-backlash designs (ZBX, WDG, NTB, KHD, VHD, NTG, ZBA); general purpose BFW Series plus the Mini Series
- Custom nut configurations and mountings are also readily available
- Custom free-wheeling fabricated and molded solutions are available, onsite molding design & production
- The Kerk brand anti-backlash designs provide assemblies which are wear compensating with low frictional drag and exceptional positional repeatability
- Operation to more than 300 million inches of travel can be achieved

Nut and Screw Materials

In addition to the Kerk self-lubricating acetal nut material, we offer a variety of custom compounded **Kerkite® composite polymers**, formulated to provide optimum performance in their target conditions and applications.

- High performance materials
- Exceptional wear properties
- Cost and design advantages afforded through injection molding
- Mechanical, thermal and electrical properties; compatible with many chemicals and environmental conditions: temperature, chemical resistance, radiation resistance, etc.
- Compounded with lubricants, reinforcements and thermoplastic polymers

Kerk brand lead screws and linear rails start with premium grade 303 stainless steel. Kerk stainless steel lead screws are corrosion resistant, non-magnetic, and compatible with many demanding processes. The ideal starting point for a maintenance-free product, this premium quality stainless steel is being used in numerous applications including medical applications, clean rooms, food and human contact, salt spray, cryogenics and vacuum. We can also roll screws in many materials and produce nuts in alternative plastics. If the material can be molded, machined, ground, or rolled, we can likely process it.

	Properties of Standard vs. Kerkite Materials							
	Kerkite KP20							
Material	Acetal w/Lubrication	Carbon Reinforced Nylon w/Lubrication	Carbon Reinforced PPS w/Lubrication					
Color	Black	Blue	Black					
Tensile Strength (PSI)	7,000-9,000	24,000-27,000	23,800					
Flexural Modulus (PSI)	300,000-450,000	1,750,000	2,500,000					
Deflection Temp (°F)	255	485	500					
Thermal Exp. Coeff (IN/IN/F)	5.8 X 10 ⁻⁵	1.1 X 10 ⁻⁵	0.8 X 10 ⁻⁵					
Constant Use Temp (°F)	150	300	400					
Water Absorption (%) .2 *Coefficient of Friction .0812	.2	.9	.02					
	.0812	.1015	.1520					
PV Limit (@ 20 IN/SEC) PSI FPM	15,000	43,000	70,000*					

Please note the above values are based on polymer industry standards and should be used as reference only. Materials need to be tested in individual applications to ensure that properties will be sufficient.

Kerk Lead Screw TFE Coatings

We offer multiple options for lubrication. All Kerk lead screw nuts feature self-lubricating polymers. However, when maximum performance is required, Kerkote® and Black Ice® Teflon TFE coatings provide unmatched results in the most demanding applications. The purpose of TFE coating is to supply a more even distribution of lubricant than is normally found when using standard self-lubricating plastics on steel.

Kerkote TFE Coating

Lubrication to the nut/screw interface occurs by the nut picking up Kerkote® TFE particles from the soft coating as well as from the migration of the internal lubricant within the plastic nut. The lubricant, although solid, has some "spreading" ability as in fluid lubric

- Ideal for most environments (Black Ice recommended for harsh environments)
- Soft coating
- Dry lubricant
- Long term
- Maintenance-free
- Can be re-machined
- Optimized for softer plastics (acetals/nylons), with or without mechanical reinforcement
- Provides maximum level of self-lubrication
- Not intended to be used with additional lubricants
- Should not be used in environments where oils or other lubricant contamination is possible

Black Ice TFE Coating

Hard coating that remains on the screw. Rather than acting as a dry lubricant, it is an anti-friction coating whose surface properties displace the metal to which it is applied.

- Ideal for harsh environments or if reduced friction and a permanent coating is desired
- Hard coating
- Long term
- Maintenance free
- Low friction surface upon which the nut travels
- Exceptionally durable with virtually any type of polymer nut
- Not intended for use with metal or glass fiber reinforced nuts, although can withstand abrasion from contamination, rigid polymer systems, fluid impingement and wash down applications
- Not intended to be used with additional lubricants

Greace

Teflon TFE coatings are intended to be used without additional lubricants. However, there are certain applications where external lubrication may be desired. These include the use of nut materials such as glass reinforced plastic or metal. We offer a selection of greases developed specifically for these applications.

^{*}The actual value of coefficient of friction will depend on surface finish, environment and any additional lubrication

^{**}Please note manufacturers vary the PV listed values as well as the way PV is calculated. Please use these numbers for PV as a reference guide between materials. Higher PV materials are available.

^{***}Please consult factory for proper use and alternative PPS materials with higher PV values.

Lead Screw Nut Selection

Kerk Lead Screw Assemblies are modified acme thread forms optimized for performance and available in a broad range of lead screw diameters, leads and nut styles, custom designed for your application. Kerk lead screws are self-adjusting, maintenance-free and require no lubrication. Providing maximum accuracy, high reliability, smooth, quiet operation and low cost, Kerk lead screw assemblies are your best choice for high performance linear motion control.

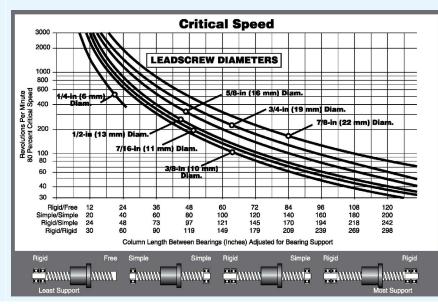
	Nut Styles										
				• = Good •• = Better ••• = Best							
		Units					THE WATER			No.	
			ZBX	ZBA	ZBM	KHD	WDG	NTB	VHD	BFW	
Max Dynamic		lb	35	55	1	20	75	200	350	500	
Load		N	155	245	4.4	89	333	890	1557	2224	
Compactness			••	••	•••	••	•••	••	•	•••	
Typical Drag Torque			••	••	••	•••	••	••	•••	N/A	
Vibration	[horizontal]		•••	•••	•••	••	•	•	••	N/A	
Damping	[vertical]		•••	•••	•••	•	•	•	•	N/A	
Smoothness			••	•••	••	••	••	••	••	•	
Backlash Compensation			••	•	••	•••	•••	•••	•••	N/A	
Drag Adujusted			N/A	•••	N/A	••	N/A	•	••	N/A	
Stiffness			••	••	••	•••	•••	•••	•••	N/A	
Easy to Modify			••	•	•	•	•	•••	•	•••	
Custom Materials Available			••	••	•	•	•	•••	•	•••	
Best for Fine Leads		<.2",5mm	•••	•••	•••	•••	•••	•	•••	•••	
Best for Long Leads		>1",25mm	•••	•••	N/A	•••	•••	•••	•••	•••	

Lead Screw by Size

Kerk Lead Screws utilize the latest in precision rolling technology. Lead screws are available in standard diameters from 5/64" to 15/16" and includes metric and left hand threads. Most standard lead screws are manufactured from 303 stainless steel and are produced using our exclusive precision rolling process. Other lead screw materials are available for application specific requirements.

	Dynamic Load by Nut Type									
Diameter	Lead Range	Units	ZBX	ZBA	ZBM	KHD	WDG	NTB	VHD	BFW
5/64 inch	0.012-0.079 in				1					10
(2mm)	(0.3-2.00 mm)				(4.4)					(44)
1/8 inch	0.024-0.125 in							5		25
(3.2mm)	(0.61-3.18 mm)							(22)		(111)
0.132 inch	0.020-0.315 in							5		25
(3.3mm)	(0.50-8.00 mm)							(22)		(111)
9/64 inch	0.012-0.394 in							5		25
(3.6mm)	(0.30-10.00 mm)							(22)		(111)
5/32 inch	0.033-0.500 in							5		25
(4mm)	(0.84-12.70 mm)							(22)		(111)
3/16 inch	0.020-0.050 in						10	5		25
(5mm)	(0.50-12.70 mm)						(44)	(22)		(111)
7/32 inch	0.024-0.384 in						10	5		25
(5.6mm)	(0.61-9.75 mm)						(44)	(22)		(111)
1/4 inch	0.024-1.000 in		5	5			10	10		50
(6mm)	(0.61-25.4 mm)	lbs	(22)	(22)			(44)	(44)		(222)
5/16 inch	0.039-0.800 in	N	10	10		20	25	20		75
(8mm)	(1.00-20.32 mm)		(44)	(44)		(89)	(111)	(89)		(334)
3/8 inch	0.025-1.500 in		10	10		20	25	20		75
(10mm)	(0.64-38.10 mm)		(44)	(44)		(89)	(111)	(89)		(334)
7/16 inch	0.050-0.615 in		15	15			75	30		90
(11mm)	(1.27-15.62 mm)		(67)	(67)			(334)	(133)		(400)
1/2 inch	0.050-2.000 in		25	25			75	100	150	150
(13mm)	(1.27-50.80 mm)		(111)	(111)			(334)	(445)	(667)	(667)
5/8 inch	0.100-2.000 in		35	35				125	250	225
(16mm)	(2.54-50.80 mm)		(156)	(156)				(556)	(1112)	(1001)
3/4 inch	0.0625-3.622 in			55				150	350	350
(19mm)	(1.59-92.00 mm)			(245)				(667)	(1557)	(1557)
7/8 inch	0.200-1.000 in			55				200	350	500
(22mm)	(5.08-25.4 mm)			(245)				(890)	(1557)	(2224)
15/16 inch	0.050-3.000 in			55				200		500
(24mm)	(1.27-76.20 mm)			(245)				(890)		(2224)

Terminology


Screw **Accuracy**

HKP uses a unique precision rolling process for screw manufacturing. Standard lead accuracy for Kerk screws is .0006 in.Jin. (mm/mm). Lead accuracies are available up to .0001 in.Jin. (mm/mm). Please consult the factory for higher lead accuracies. Assemblies have an extremely high bi-directional repeatability of 50 micro-inches (1.25 micron).

Critical Speed

End Machining HKP can custom machine screws to your specifications or provide cut-to-length screws for your own machining.

This is the rotational speed at which a screw may experience vibration or other dynamic problems. See CRITICAL SPEED CHART to determine if application parameters result in speed approaching critical. To minimize critical speed problems: use a longer lead, choose a larger diameter or increase bearing mount support.

Lengths can be specified up to 12 ft. (4M) from stock, (depending on diameter and lead). Cut to length screws are offered in 6-in increments (6-in, 12, 18,) + 1.0-in/-0-in.

Lengths Lead

Advancement per revolution. All screws are listed by lead, not pitch. Lead = Pitch x Number of Starts

Pitch

Crest-to-crest distance or one divided by threads per inch. (On a multiple start thread, the pitch equals the lead divided by the number of starts.)

The nut materials we use provide long wear-life over a wide variety of conditions. However, very high loads and/or speeds will accelerate nut wear. Special materials may be required for these situations. We offer the following guidelines for continuous duty linear traversing speeds for optimum life:

Tuesteen
Traverse
Speed
JUCCU

	Lead	Traverse Speed	Lead	Traverse Speed
	1/10 - 1/2-in	4-in/sec	1 - 12 mm	100 mm/sec
	1/2 - 1-in	10-in/sec	12 - 25 mm	250 mm/sec
	1 - 2 1/2-in	30-in/sec	25 - 60 mm	760 mm/sec

Maximum

Although the Kerk Anti-Backlash Assemblies are capable of withstanding relatively high loads without catastrophic failure, these units have been designed to operate under the loading shown in the size charts.

Efficiency

Torque

Efficiency is the relationship of work input to work output. It should not be confused with mechanical advantage. Listed efficiencies are theoretical values based on Kerkote TFE The required motor torque to drive a lead screw assembly is the sum of three components: the inertial torque, drag torque, and torque-to-move load. It must be noted that

this is the torque necessary to drive the lead screw assembly alone. Additional torque associated with driving frictional bearings and motor shafts, moving components, and drag due to general assembly misalignment must also be considered.

$T_{i} = I \alpha$ Where I = screw inertia

 α = angular acceleration

Drag Torque: The Kerk Anti-Backlash Assemblies are typically supplied with drag torque of 1 to 7 oz.-in. The magnitude of the drag torque is dependent on the standard factory settings or settings specified by the customer. Generally, the higher the preset force, the better the Anti-Backlash characteristics.

$$T_L = \frac{\text{LOAD x LEAD}}{2\pi \text{ x EFFICIENCY}}$$

Sometimes referred to as reversibility, back driving is the ability of a screw to be turned by a thrust load applied to the nut. Generally, back driving will not occur when the screw lead is less than 1/3 the diameter for uncoated screws or 1/4 the diameter for Kerkote TFE coated screws. For higher leads where back driving is likely, the torque required for holding a load is:

Back Driving

$$T_b^{=} \frac{\text{LOAD x LEAD x BACKDRIVE EFFICIENCY}}{2\pi}$$

Screw Straightness

Screw straightness is measured as Total Indicator Runout(TIR). The standard straightness for lead screws is .003-in/ft. Haydon Kerk Motion Solutions can provide tighter specifications on customer request.

Maydon(kerk)

Standard/Block Dimensional Tolerances

Inch	
.X	± .02
.XX	± .010
.XXX	± .005

Metric (mm)	
L < 4	± 0.1
4 < L ≤ 16	± 0.15
16 < L ≤ 63	± 0.2
63 < L ≤ 250	± 0.3

Mechanical Properties

Screw Inertia				
Screw Size	Screw Inertia	Screw Inertia		
inch (mm)	(oz-inch sec2 /inch)	(g-cm2/cm)		
5/64 (2)	3.4 x 10 ⁻⁸	9.5 x 10 ⁻⁴		
1/8 (3.2)	1.8 x 10 ⁻⁷	5.0 x 10 ⁻³		
9/64 (3.5)	3.4 x 10 ⁻⁷	9.5 x 10 ⁻³		
5/32 (3.97)	4.9 x 10 ⁻⁷	1.4 x 10 ⁻²		
3/16 (4.76)	1.1 x 10 ⁻⁶	3.1 x 10 ⁻²		
7/32 (5.55)	1.8 x 10 ⁻⁶	5.0 x 10 ⁻²		
1/4 (6)	3 x 10 ⁻⁵	8.3 x 10 ⁻²		
5/16 (8)	5 x 10 ⁻⁵	1.4		
3/8 (10)	1.5 x 10 ⁻⁵	0.4		
7/16 (11)	3.5 x 10 ⁻⁵	1.0		
1/2 (13)	5.2 x 10 ⁻⁵	1.4		
5/8 (16)	14.2 x 10 ⁻⁵	3.9		
3/4 (19)	30.5 x 10 ⁻⁵	8.5		
7/8 (22)	58.0 x 10 ⁻⁵	16.1		
15/16 (24)	73.0 x 10 ⁻⁵	20.3		

Lead Screw				
Material	Surface Finish			
303 Stainless Steel (options available)	Better than 16 mi- cro-inches (0.4 μm)			

Nuts						
Material	Tensile Strength	Coefficient of Expansion				
Polyacetal with Lubricating Additive	9,700 psi	6.0 x 10 ⁻⁵ in/in/°F				

*Other Kerkite materials available

Assembly						
Standard Operating Temp. Range	g Coefficent of Friction					
32 - 200° F*	Polyacetal Nut to	Static = .08	.08 **			
(0 - 93° C)*	Screw	Dynamic = .15	.09 **			
-40 - 311° F	Polyester/Fiberglass	Static = .07				
(-40 - 155° C)	Nut to Screw***	Dynamic = .08				

* Very high or low temperatures may cause significant changes in the nut fit or drag torque. Please

call Haydon Kerk Motion Solutions for optional temperature range materials.

** with Kerkote® TFF Coating

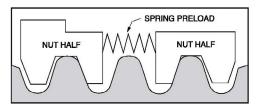
*** This material is only recommended to be used with grease, Coefficent of Friction numbers are with HSS-06 grease

Anti-Backla	ash Life			
Series	Without Kerkote® TFE Coating inch (cm)	With Kerkote® TFE Coating inch (cm)		
ZBA	5 to 10 million (12 to 25 million)	15 to 40 million (38 to 100 million)		
ZBX	40 to 60 million (100 to 150 million)	150 to 200 million (380 to 500 million)		
KHD 80 to 100 million (200 to 250 million)		180 to 230 million (450 to 580 million)		
WDG	100 to 125 million (250 to 315 million)	200 to 250 million (500 to 635 million)		
NTB	100 to 125 million (250 to 315 million)	200 to 250 million (500 to 635 million)		
VHD	200 to 225 million (500 to 570 million)	300 to 350 million (760 to 880 million)		
BFW	N/A, Typical Backlash .003 to .010 (.076 to .25)	N/A, Typical Backlash .003 to .010 (.076 to .25)		
NTG	5 to 10 million (12 to 25 million)	15 to 40 million (38 to 100 million)		

Anti-backlash life is defined as the nut's ability to compensate for wear while maintaining its zero backlash properties. Above life data is based on 25% of the dynamic load rating. NTB style does not include mini series sizes. Life will vary with loading, operating environment, and duty cycle. The longer screw leads generally provide longer life.

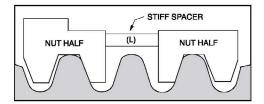
Grease Compatibility Chart

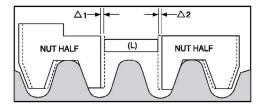
		Lubrication Coatings					
Nut Type	Grease	Kerkote®	Black Ice®				
ZBX		Yes					
ZBA	Yes						
KHD	No	Ye	Yes				
VHD	No	Ye	Yes				
WDG	No Yes						
BFW		Yes					
NTB	No Yes						
NTG	S Yes						
111-							



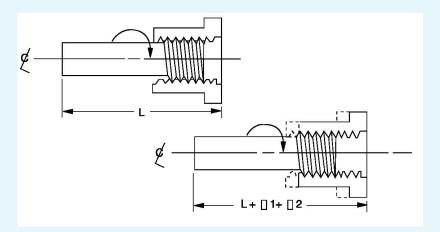
Anti-Backlash Technology

Axial Take-up Mechanism


The standard method for taking up backlash is to bias two nut halves axially using some type of compliant spring. (Wavy washer, compression spring, rubber washer, etc.) The unit is very stiff in the direction in which the nut half is loaded against the flank of the screw thread. However, in the direction away from the screw thread, the nut is only as axially stiff as the amount of preload which the spring exerts.


For example, if the maximum axial load to which the system is subjected is 50 lbs., the amount of spring preload must be equal to, or greater than, 50 lbs. in order to maintain intimate screw/nut contact. The problems arising from preloading in this manner are increased drag torque and nut wear. Obviously, the higher the load at the screw/nut interface, the higher the required torque to drive the nut on the screw and the more susceptible the unit is to nut

An alternate method replaces the spring with a stiff spacer sized to fit exactly between the two nut halves. There is no excessive preload force at the interface and the unit is capable of carrying high axial loads in either direction with no backlash. This is fine initially. However, as use time increases, wear begins on the nut threads causing a gap to develop between the spacer (L) and the nut halves.



This gap (1 + LI2) is now the amount of backlash which has developed in the unit. This backlash can be removed by replacing the stiff spacer with a new spacer equal to (L + 1 +Ll2). This process, although effective, would be extremely costly and difficult to implement on a continuous basis.

The Solution

What is needed, then, is a stiff spacer which will continually expand to accommodate the wear which occurs during use. This is done by creating a spacer threaded at one end with a complimentary nut torsionally biased to advance when a gap develops. The thread at the end of the spacer is a fine helix such that an axial load will not backdrive the nut once spacer growth has occurred. The preload on the unit is only the amount necessary to turn the spacer nut on the spacer rod and is independent of the external system loadings. We thus have a self-wear compensating unit which has extremely low frictional drag torque yet high axial stiffness.

Anti-Backlash Nuts

thermoplastic materials.

Haydon Kerk offers a renowned portfolio of anti-backlash designs that create lead screw assemblies which are wear compensating,

with low frictional drag and exceptional positional repeatability. Seven standard anti-backlash nut styles cover the range of axial, radial

and torsional designs to suit a wide range of applications. Haydon Kerk provides nuts in a wide range of wear resistant, self-lubricating

KHD Nut Series

Eliminates the need for load compensating preload forces. The KHD Series anti-backlash assembly makes use of the Kerk patented AXIAL TAKE-UP MECHANISM (see Lead screw Assemblies: Anti-Backlash Technologies section) to provide backlash compensation. The unique split nut with torsional take-up provides increased load capacity and axial stiffness over comparably sized ZBX units. Although the KHD offers high axial stiffness, frictional drag torque (1-3 oz.-in.) is very low. The anti-backlash mechanism in the KHD unit eliminates the need for load compensating preload forces. The assembly consists of a 303 stainless steel screw mated with a self-lubricating polyacetal nut. End machining to customer specifications and Kerkote® TFE screw coating are optional.

Technical Data

Material	Polyacetal, Lubricant Additive
Tensile Strength	9,700 psi
Coefficient of Expansion	6.0 x 10 –5 in/in/°F
Coefficent of Friction Polyacetal Nut to Screw	Static = .08 .08 ** Dynamic = .15 .09 **
Standard Operating Temperature Range	32 - 200° F* (0 - 93° C)*

^{*}Very high or low temperatures may cause significant changes in the nut fit or drag torque. Please call the HKP Engineering Team at 603 213 6290 for optional temperature range materials.

** with Kerkote® TFE Coating.

Grease Compatibility

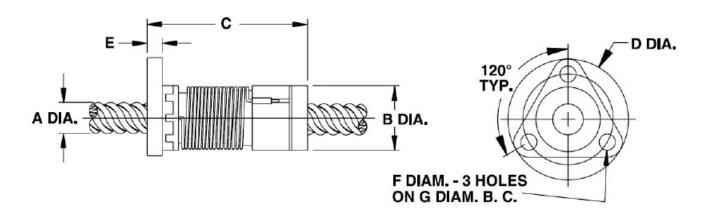
Coatings	Compatible
Kerkote® TFE Coating	YES
Black Ice® TFE Coating	YES
Grease	NO

Anti-Backlash Life

Without Kerkote® TFE Coating	With Kerkote® TFE Coating
inch / (cm)	inch / (cm)
80 to 100 million (200 to 250 million)	180 to 230 million (450 to 580 million)

Anti-backlash life is defined as the nut's ability to compensate for wear while maintaining its zero backlash properties. Above life data is based on 25% of the dynamic load rating. Life will vary with loading, operating environment, and duty cycle. The longer screw leads generally provide longer life.

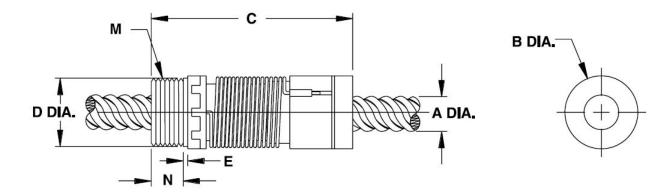
Identifying the KHD Series Nut Part Number Codes when Ordering


KHD	Α	K	R	031	_	0039	_	XXXX
Prefix	Nut Mounting Style	Lubrication	Thread Direction	Diameter Code		Nominal Thread Lead Code		Unique Identifier
KHD	A = Flanged (Triangular)T = ThreadedX = Custom	S = Uncoated K = Kerkote® TFE Coating N = Nut only B = Black Ice® TFE Coating	R = Right hand L = Left hand (Not Available for Micro Series) (Refer to lead screw charts for availability	031 = .313 in (8 mm) 037 = .375 in (10 mm)		(Refer to LEAD CODE Specifications chart, page 3)		Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (–) as shown above. For assistance call our Engineering Team at 603 213 6290.

Dimensional Drawings

KHDA Flange Mount


KIIDA	Screw Diam. A	Nut Diam. B	Nut Length C	Flange Diam. D	Flange Thickness E	Thread M*	Thread Length N	Dynamic Load	Drag Torque
KHDA Flange	inch (mm)	inch (mm)	inch (mm)	inch (mm)	inch (mm)	inch	inch (mm)	lbs (Kg)	oz-in (N-m)
Mount	5/16 (8)	.80 (20.3)	2.2	.75 (19.1)	.05 (1.27)	3/4-20	.35 (8.9)	20 (10)	1-3 (.007020)
	3/8 (10)	.80 (20.3)	(55.9)	.75 (19.1)	.05 (1.27)	3/4-20	.35 (8.9)	20 (10)	1-3 (.007020)

KHDT Thread Mount

KHDT Thread Mount	Screw Diam. A inch (mm)	Nut Diam. B inch (mm)	Nut Length C inch (mm)	Flange Diam. D inch (mm)	Flange Thickness E inch (mm)	Thread M* inch	Thread Length N inch (mm)	Dynamic Load** Ibs (Kg)	Drag Torque oz-in (N-m)
	5/16 (8)	.80 (20.3)	2.2 (55.9)	.75 (19.1)	.05 (1.27)	3/4-20	.35 (8.9)	20 (10)	1-3 (.007020)
	3/8 (10)	.80 (20.3)	2.2 (55.9)	.75 (19.1)	.05 (1.27)	3/4-20	.35 (8.9)	20 (10)	1-3 (.007020)

Metric numbers are for reference only.

Dimensional Tolerances							
Inc	hes	Metric (mm)					
.X	± .02	< L 4	± 0.1				
.XX	± .010	4 < L ≤ 16	± 0.15				
.XXX	± .005	16 < L ≤ 63	± 0.2				
		63 < L ≤ 250	± 0.3				

www.haydonkerkpittman.com

■ Lead Screw Compatibility: KHD Series

Diameter		Diameter	Lead			Outside Diameter		Root Diameter			
Dian	neter	Code	Le	ad	LEAD CODE Left Hand	(for ref			erence)	Efficiency %*	
inches	mm		inches	mm		Available	inches	mm	inches	mm	
			0.039	1.00	0039		0.315	8.00	0.261	6.63	34
			0.057	1.44	0057		0.315	8.00	0.243	6.17	43
			0.0741	1.88	0074		0.312	7.92	0.211	5.36	51
F/40		004	0.111	2.82	0111		0.312	7.92	0.232	5.89	60
5/16	8	031	0.167	4.24	0167		0.312	7.92	0.211	5.36	69
			0.250	6.35	0250		0.312	7.92	0.234	5.94	76
			0.500	12.70	0500		0.312	7.92	0.232	5.89	83
			0.800	20.32	0800		0.306	7.77	0.243	6.17	86
			0.025	0.64	0025		0.375	9.53	0.337	8.56	21
			0.039	1.00	0039		0.394	10.01	0.350	8.89	28
			0.04167	1.06	0042		0.375	9.53	0.320	8.13	34
			0.050	1.27	0050	•	0.375	9.53	0.301	7.65	36
			0.055	1.40	0055		0.375	9.53	0.303	7.70	38
			0.059	1.50	0059	•	0.389	9.88	0.313	7.95	38
			0.0625	1.59	0063	•	0.388	9.86	0.295	7.49	41
			0.068	1.73	0068		0.388	9.86	0.295	7.49	42
			0.079	2.00	0079		0.375	9.53	0.264	6.71	47
			0.0833	2.12	0083		0.375	9.53	0.293	7.44	48
			0.100	2.54	0100	•	0.375	9.53	0.266	6.76	53
			0.125	3.18	0125	•	0.375	9.53	0.295	7.49	59
			0.157	4.00	0157		0.375	9.53	0.274	6.96	65
			0.1667	4.23	0167		0.371	9.42	0.261	6.63	61
			0.197	5.00	0197		0.375	9.53	0.266	6.76	69
3/8	10	037	0.200	5.08	0200	•	0.375	9.53	0.266	6.76	69
0,0			0.250	6.35	0250		0.375	9.53	0.268	6.81	70
			0.300	7.62	0300		0.375	9.53	0.255	6.48	76
			0.333	8.46	0333		0.375	9.53	0.245	6.22	78
			0.363	9.22	0363	•	0.375	9.53	0.260	6.60	79
			0.375	9.53	0375		0.375	9.53	0.265	6.73	79
			0.394	10.00	0394		0.375	9.53	0.260	6.60	79
			0.400	10.16	0400		0.375	9.53	0.293	7.44	79
			0.472	12.00	0472		0.388	9.86	0.287	7.29	82
			0.500	12.70	0500	•	0.388	9.86	0.265	6.73	81
			0.667	16.94	0667		0.375	9.53	0.273	6.93	83
			0.667	19.05	0750		0.388	9.86	0.273	6.93	84
			0.984	25.00	0984		0.375	9.53	0.262	6.65	84
			1.000	25.40	1000		0.383	9.73	0.254	6.45	84
			1.200	30.48	1200	•	0.383	9.73	0.254	6.45	84
			1.250	31.75	1250		0.375	9.53	0.278	7.06	84
			1.500	38.10	1500		0.375	9.53	0.264	6.71	83

Shaded areas have been translated from their designed inch or mm dimension to an

NTB Nut Series

For higher load applications. The NTB Series anti-backlash assembly is designed for higher load applications than the ZBX or KHD series units. Using the specially designed take up mechanism, it maintains axial stiffness throughout its life while system torque is held to a minimum. The need to highly pre-load the nut to compensate for load has been eliminated with the Kerk NTB Series assembly.

The nut is manufactured with a self-lubricating polyacetal designed to run efficiently on the precision rolled shafting. Screws are 303 stainless and are available with the proprietary long - life Kerkote® TFE coating. The NTB's simple, compact design can be easily modified for custom applications.

The NTB assembly provides low drag torque, high system stiffness, smooth operation, and long life throughout its load and speed range.

NTB Mini Nut Series

Miniature style asemblies, with an "anti-backlash" function. The Mini Series brings Haydon Kerk quality, precision and value to products that were previously off limits to lead screw technology.

NTB Series Nut Assembies

Technical Data

Material	Polyacetal, Lubricant Additive			
Tensile Strength	9,700 psi			
Coefficient of Expansion	6.0 x 10 −5 in/in/°F			
Coefficent of Friction Polyacetal Nut to Screw	Static = .08			
Standard Operating Temperature Range	32 - 200° F* (0 - 93° C)*			

^{*}Very high or low temperatures may cause significant changes in the nut fit or drag torque. Please call the HKP Engineering Team at 603 213 6290 for optional

Anti-Backlash Life

Without Kerkote® TFE	With Kerkote® TFE
Coating	Coating
inch / (cm)	inch / (cm)
100 to 125 million	200 to 250 million
(250 to 315 million)	(500 to 635 million)

Anti-backlash life is defined as the nut's ability to compensate for wear while maintaining its zero backlash properties. Above life data is based on 25% of the dynamic load rating. Life will vary with loading, operating environment, and duty cycle. The longer screw leads generally provide longer life.

Grease Compatibility

Coatings	Compatible
Kerkote® TFE Coating	YES
Black Ice® TFE Coating	YES
Grease	NO

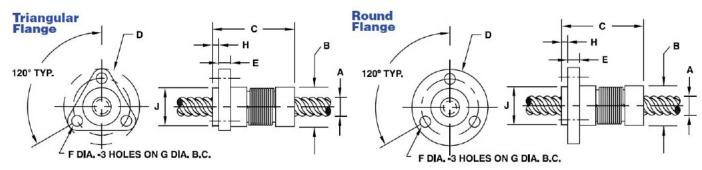
Identifying the NTB Series Nut Part Number Codes when Ordering

NTB	T	K	R	025	0050	XXXX
Prefix	Nut Mounting Style	Lubrication	Thread Direction	Diameter Code	Nominal Thread Lead Code	Unique Identifier
NTB	A = Flanged (Triangular) F = Flanged (Round) T = Threaded X = Custom Mini Series Only: B = Barrel ^m R = Rectangular ^m *** NTB Mini Series	S = Uncoated K = Kerkote® TFE Coating N = Nut only B = Black Ice® TFE Coating	R = Right hand L = Left hand (Not Available for Micro Series) (Refer to lead screw charts for availability	012 ^m = .125 in (3.2 mm) 013 ^m = .133 in (3.3 mm) 014 ^m = .141 in (3.6 mm) 016 ^m = .156 in (4 mm) 018 ^m = .188 in (5 mm) 021 ^m = .219 in (5.6 mm) 025 = .250 in (6 mm) 031 = .313 in (8 mm)	(Refer to LEAD CODE Specifications charts, pages 4 to 8)	Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 603 213 6290.

^{*} Listed efficiencies are theoretical values based on Kerkote® TFE coated lead screw
** Listed efficiencies for Micro screws are theoretical values based on non-coated lead screws

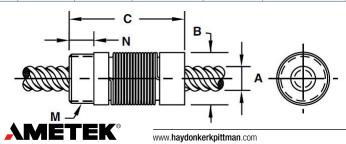
^{**} with Kerkote® TFE Coating.


Dimensional Drawings

NTB Flange Mount

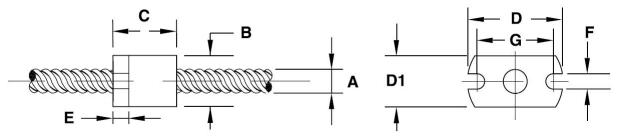
	Screw Diam.	Nut Diam. B	Nut Length C	Flange Diam. D	Flange Thickness E	Mounting Hole Diam. F	Bolt Circle Diam. G	Hub Width	Hub Diam. J	Dynamic Load	Drag Torque
NTBA Trianular-	inch (mm) 1/4 (6)	inch (mm)	inch (mm) 1.1 (28)	inch (mm) 1.00 (25.4)	inch (mm)	inch (mm) .143 (3.63)	inch (mm) .750 (19.1)	inch (mm) .08 (2.0)	inch (mm) .500 (12.7)	10 (4.5)	oz-in (N-m) .5-2 (.004014)
Flange	5/16 (8)	.80 (20.3)	1.8 (46)	1.50 (38.1)	.20 (5.1)	.200 (5.08)	1.125 (28.6)	.10 (2.54)	.750 (12.7)	20 (9.1)	1-3 (.00702)
	3/8 (10)	.80 (20.3)	1.8 (46)	1.50 (38.1)	.20 (5.1)	.200 (5.08)	1.125 (28.6)	.10 (2.54)	.750 (19.1)	20 (9.1)	1-3 (.00702)
	7/16 (11)	.90 (22.9)	1.8 (46)	1.62 (41.2)	.23 (5.7)	.200 (5.08)	1.125 (28.6)	.10 (2.54)	.875 (22.2)	30 (13.6)	1-3 (.00702)

Metric numbers are for reference only.


	Screw Diam. A inch (mm)	Nut Diam. B inch (mm)	Nut Length C inch (mm)	Flange Diam. D inch (mm)	Flange Thickness E inch (mm)	Mounting Hole Diam. F inch (mm)	Bolt Circle Diam. G inch (mm)	Hub Width H inch (mm)	Hub Diam. J inch (mm)	Dynamic Load lbs (Kg)	Drag Torque oz-in (N-m)
NTBF Round	1/2 (13)	1.06 (26.9)	2.1 (54)	1.75 (44.5)	.25 (6.4)	.220 (5.59)	1.406(35.71)	.12 (3.0)	1.00 (25.4)	100 (45.5)	2-6 (.01404)
Flange	5/8 (16)	1.38 (34.9)	2.3 (59)	2.13 (54.1)	.28 (7.0)	.220 (5.59)	1.750(44.45)	.10 (2.54)	1.25 (31.8)	125 (56.8)	2-6 (.01404)
	3/4 (19)	1.56 (39.6)	2.7 (67)	2.38 (60.5)	.31 (7.9)	.220 (5.59)	2.000 (50.80)	.10 (2.54)	1.50 (38.1)	150 (68.2)	3-7 (.0205)
	7/8 (22)	1.75 (44.5)	2.8 (70)	2.63 (66.8)	.38 (9.5)	.220 (5.59)	2.250 (57.15)	.12 (3.0)	1.75 (44.5)	200 (90.9)	4-8 (.0306)
	15/16 (24)	1.75 (44.5)	2.8 (70)	2.63 (66.8)	.38 (9.5)	.220 (5.59)	2.250 (57.15)	.12 (3.0)	1.75 (44.5)	200 (90.9)	4-8 (.0306)

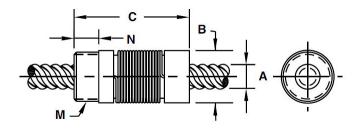
NTB Thread Mount

	Screw Diam. A inch (mm)	Nut Diam. B inch (mm)	Nut Length C inch (mm)	Thread M* inch	Thread Length N inch (mm)	Dynamic Load** lbs (Kg)	Drag Torque oz-in (N-m)
	1/8 (3)	.40 (10.2)	.50 (28)	3/8-24	1.25 (3.18)	5 (2.3)	.5 (.004)
	1/4 (6)	.52 (13.2)	1.1 (28)	7/16-20	.25 (6.4)	10 (4.5)	.5-2 (.004014)
NTBT	5/16 (8)	.80 (20.3)	1.8 (45)	3/4-20	.38 (9.5)	20 (9.1)	1-3 (.00702)
Thread	3/8 (10)	.80 (20.3)	1.8 (45)	3/4-20	.38 (9.5)	20 (9.1)	1-3 (.00702)
Mount	7/16 (11)	.90 (22.9)	1.8 (46)	13/16-16	.38 (9.5)	30 (13.6)	1-3 (.00702)
	1/2 (13)	1.06 (26.9)	2.1 (54)	15/16-16	.38 (9.5)	100 (45.5)	2-6 (.01404)
	5/8 (16)	1.38 (34.9)	2.3 (59)	1 1/8-16	.38 (9.5)	125 (56.8)	2-6 (.01404)
	3/4 (19)	1.56 (39.6)	2.7 (67)	1 3/8-16	.50 (12.7)	150 (68.2)	3-7 (.0205)
	7/8 (22)	1.75 (44.5)	2.8 (70)	1 9/16-16	.50 (12.7)	200 (90.9)	4-8 (.0306)
	15/16 (24)	1.75 (44.5)	2.8 (70)	1 9/16-16	.50 (12.7)	200 (90.9)	4-8 (.0306)


Dimension	nal Tolerance	es	
Inc	hes	Metric (n	nm)
.X	± .02	< L 4	± 0.1
.XX	± .010	4 < L ≤ 16	± 0.15
.XXX	± .005	16 < L ≤ 63	± 0.2
		63 < L ≤ 250	± 0.3

NTB Mini Flange Mount

NTBR Flange	Screw Diam. A inch (mm)	Nut Diam. B inch (mm)	Nut Length C inch (mm)	Flange Height D1 inch (mm)	Flange Diam. D inch (mm)	Flange Thickness E inch (mm)	Mounting Hole Diam. F inch (mm)	Bolt Circle Diam. G inch (mm)	Dynamic Load Ibs (Kg)	Drag Torque oz-in (N-m)
Mount	1/8 inch through 7/32 inch (3 mm through 5.6 mm)	0.40 (10.2)	0.50 (13)	0.40 (10.2)	0.75 (19.1)	0.13 (3.2)	0.120 (3.05)	0.600 (15.24)	5 (2.3)	0.5 (.004)


Metric numbers are for reference only.

NTB Mini Thread Mount

	Screw Diam. A	Nut Diam. B	Nut Length C	Thread M*	Thread Length N	Dynamic Load**	Drag Torque
NTBT	inch (mm)	inch (mm)	inch (mm)	inch	inch (mm)	lbs (Kg)	oz-in (N-m)
Thread	1/8 inch through						
Mount	7/32 inch	0.40	0.50	2/0.04	1.25	5	0.5
	(3 mm through	(10.2)	(13)	3/8-24	(3.18)	(2.3)	(.004)
	5.6 mm)						

Metric numbers are for reference only.

■ Lead Screw Compatibility: NTB Series

Dian	neter	Diameter Code	Le	ead	LEAD CODE	Left Hand Available		Diameter erence)		iameter erence)	Efficiency %*
inches	mm		inches	mm		7114114315	inches	mm	inches	mm	
			0.024	0.61	0024		0.129	3.28	0.093	2.36	44
			0.039	1.00	0039		0.129	3.28	0.094	2.39	57
1/0	2.0	010	0.048	1.22	0048		0.129	3.28	0.093	2.36	61
1/8	3.2	012	0.075	1.91	0075		0.129	3.28	0.093	2.36	70
			0.096	2.44	0096	•	0.129	3.28	0.093	2.36	75
			0.125	3.18	0125	LH Only	0.125	3.18	0.078	1.98	80
			0.020	0.50	0020		0.132	3.35	0.104	2.64	42
			0.039	1.00	0039		0.132	3.35	0.080	2.03	61
.132	3.3	013	0.079	2.00	0079		0.132	3.35	0.080	2.03	75
			0.157	4.00	0157		0.132	3.35	0.080	2.03	84
			0.315	8.00	0315		0.132	3.35	0.080	2.03	87
			0.012	0.30	0012		0.140	3.56	0.123	3.12	26
			0.024	0.61	0024		0.140	3.56	0.105	2.67	43
9/64	3.6	014	0.048	1.22	0048		0.140	3.56	0.081	2.06	62
			0.096	2.44	0096		0.140	3.56	0.081	2.06	75
			0.394	10.00	0394		0.140	3.56	0.102	2.59	86
			0.033	0.84	0033	•	0.156	3.96	0.116	2.95	45
			0.050	1.27	0050	LH Only	0.156	3.96	0.096	2.44	59
			0.094	2.39	0094		0.164	4.17	0.128	3.25	67
5/32	4	016	0.125	3.18	0125		0.168	4.27	0.130	3.30	74
			0.250	6.35	0250		0.156	3.96	0.130	3.30	83
			0.375	9.53	0375		0.156	3.96	0.130	3.30	85
			0.500	12.70	0500		0.156	3.96	0.130	3.30	86
			0.020	0.50	0020		0.188	4.78	0.163	4.14	30
			0.025	0.64	0025		0.188	4.78	0.150	3.81	39
			0.039	1.00	0039		0.188	4.78	0.144	3.66	47
			0.050	1.27	0050		0.188	4.78	0.124	3.15	58
			0.100	2.54	0100		0.188	4.78	0.136	3.45	69
316	5	018	0.1875	4.76	0188		0.188	4.78	0.167	4.24	78
			0.200	5.08	0200		0.188	4.78	0.124	3.15	82
			0.375	9.53	0375		0.188	4.78	0.161	4.09	84
			0.400	10.16	0400		0.188	4.78	0.124	3.15	84
			0.427	10.85	0427		0.188	4.78	0.162	4.11	85
			0.500	12.70	0500	•	0.188	4.78	0.142	3.61	86

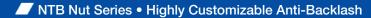
Shaded areas have been translated from their designed inch or mm dimension to an equivalent mm or inch dimension.

✓ NTB Nut Series • Highly Customizable Anti-Backlash

■ Lead Screw Compatibility: NTB Series

Diam		Diameter	l a	ادم.			Outside	Diameter	Root D	iameter	
Dian	neter	Code	Le	ad	LEAD CODE	Left Hand Available	(for ref	erence)	(for ref	erence)	Efficiency %*
inches	mm		inches	mm		rvanasio	inches	mm	inches	mm	
			0.024	0.61	0024		0.218	5.54	0.181	4.60	31
			0.03125	0.79	0031		0.204	5.18	0.160	4.06	39
			0.048	1.22	0048		0.216	5.49	0.156	3.96	50
			0.050	1.27	0050		0.200	5.08	0.135	3.43	52
7/32	5.6	021	0.0625	1.59	0063		0.218	5.54	0.142	3.61	60
			0.096	2.44	0096		0.218	5.54	0.156	3.96	66
			0.192	4.88	0192		0.218	5.54	0.156	3.96	78
			0.250	6.35	0250	•	0.204	5.18	0.140	3.56	81
			0.384	9.75	0384		0.218	5.54	0.159	4.04	86
			0.024	0.61	0024		0.250	6.35	0.218	5.54	28
			0.025	0.64	0025		0.250	6.35	0.214	5.44	30
			0.03125	0.79	0031		0.250	6.35	0.208	5.28	34
			0.039	1.00	0039		0.250	6.35	0.190	4.83	40
			0.048	1.22	0048		0.250	6.35	0.190	4.83	45
			0.050	1.27	0050	•	0.250	6.35	0.191	4.85	46
			0.059	1.50	0059		0.250	6.35	0.172	4.37	52
			0.0625	1.59	0063		0.250	6.35	0.170	4.32	52
			0.079	2.00	0079		0.250	6.35	0.170	4.32	59
			0.096	2.44	0096		0.250	6.35	0.190	4.83	61
			0.100	2.54	0100		0.250	6.35	0.190	4.83	62
1/4	6	025	0.118	3.00	0118		0.250	6.35	0.175	4.45	68
			0.125	3.18	0125		0.250	6.35	0.190	4.83	67
			0.197	5.00	0197		0.250	6.35	0.172	4.37	72
			0.200	5.08	0200		0.250	6.35	0.170	4.32	65
			0.250	6.35	0250	•	0.250	6.35	0.168	4.27	79
			0.3125	7.94	0313		0.250	6.35	0.184	4.67	81
			0.333	8.46	0333		0.250	6.35	0.170	4.32	82
			0.394	10.00	0394		0.250	6.35	0.170	4.32	78
			0.400	10.16	0400		0.250	6.35	0.170	4.32	84
			0.500	12.70	0500	•	0.250	6.35	0.169	4.29	85
			0.750	19.05	0750		0.250	6.35	0.170	4.32	86
			1.000	25.40	1000	•	0.250	6.35	0.170	4.32	84
			0.039	1.00	0039		0.315	8.00	0.261	6.63	34
			0.057	1.44	0057		0.315	8.00	0.243	6.17	43
			0.0741	1.88	0074		0.312	7.92	0.211	5.36	51
5/16	8	031	0.111	2.82	0111		0.312	7.92	0.232	5.89	60
3/10	J		0.167	4.24	0167		0.312	7.92	0.211	5.36	69
			0.250	6.35	0250		0.312	7.92	0.234	5.94	76
			0.500	12.70	0500		0.312	7.92	0.232	5.89	83
			0.800	20.32	0800		0.306	7.77	0.243	6.17	86

^{*} Listed efficiencies are theoretical values based on Kerkote® TFE coated lead screw
** Listed efficiencies for Micro screws are theoretical values based on non-coated lead screws
***Back-drive threshold is 50±10%


^{*}Listed efficiencies are theoretical values based on Kerkote® TFE coated lead screw

** Listed efficiencies for Micro screws are theoretical values based on non-coated lead screws

***Back-drive threshold is 50±10%

■ Lead Screw Compatibility: NTB Series

	Dian	neter	Diameter Code	Le	ad	LEAD CODE	Left Hand Available		Diameter erence)		iameter erence)	Efficiency %*
-	inches	mm		inches	mm		71101100010	inches	mm	inches	mm	
				0.025	0.64	0025		0.375	9.53	0.337	8.56	21
				0.039	1.00	0039		0.394	10.01	0.350	8.89	28
				0.04167	1.06	0042		0.375	9.53	0.320	8.13	34
				0.050	1.27	0050	•	0.375	9.53	0.301	7.65	36
				0.055	1.40	0055		0.375	9.53	0.303	7.70	38
				0.059	1.50	0059	•	0.389	9.88	0.313	7.95	38
				0.0625	1.59	0063	•	0.388	9.86	0.295	7.49	41
				0.068	1.73	0068		0.388	9.86	0.295	7.49	42
				0.079	2.00	0079		0.375	9.53	0.264	6.71	47
				0.0833	2.12	0083		0.375	9.53	0.293	7.44	48
				0.100	2.54	0100	•	0.375	9.53	0.266	6.76	53
				0.125	3.18	0125	•	0.375	9.53	0.295	7.49	59
				0.157	4.00	0157		0.375	9.53	0.274	6.96	65
				0.1667	4.23	0167		0.371	9.42	0.261	6.63	61
				0.197	5.00	0197		0.375	9.53	0.266	6.76	69
	0./0	40	007	0.200	5.08	0200	•	0.375	9.53	0.266	6.76	69
	3/8	10	037	0.250	6.35	0250		0.375	9.53	0.268	6.81	70
				0.300	7.62	0300		0.375	9.53	0.255	6.48	76
				0.333	8.46	0333		0.375	9.53	0.245	6.22	78
				0.363	9.22	0363	•	0.375	9.53	0.260	6.60	79
				0.375	9.53	0375		0.375	9.53	0.265	6.73	79
				0.394	10.00	0394		0.375	9.53	0.260	6.60	79
				0.400	10.16	0400		0.375	9.53	0.293	7.44	79
				0.472	12.00	0472		0.388	9.86	0.287	7.29	82
				0.500	12.70	0500	•	0.388	9.86	0.265	6.73	81
				0.667	16.94	0667		0.375	9.53	0.273	6.93	83
				0.667	19.05	0750		0.388	9.86	0.273	6.93	84
				0.984	25.00	0984		0.375	9.53	0.262	6.65	84
				1.000	25.40	1000		0.383	9.73	0.254	6.45	84
				1.200	30.48	1200	•	0.383	9.73	0.254	6.45	84
				1.250	31.75	1250		0.375	9.53	0.278	7.06	84
				1.500	38.10	1500		0.375	9.53	0.264	6.71	83
				0.050	1.27	0050		0.437	11.10	0.362	9.19	30
				0.0625	1.59	0063	•	0.436	11.07	0.358	9.09	38
				0.079	2.00	0079		0.472	11.99	0.374	9.50	42
				0.111	2.82	0111		0.437	11.10	0.327	8.31	52
				0.118	3.00	0118		0.438	11.13	0.363	9.22	52
				0.125	3.18	0125		0.438	11.13	0.357	9.07	54
				0.197	5.00	0197		0.438	11.13	0.315	8.00	65
	7/16	11	043	0.236	6.00	0236		0.433	11.00	0.313	7.95	70
				0.250	6.35	0250		0.442	11.23	0.325	8.26	70
				0.307	7.80	0307		0.445	11.30	0.343	8.71	73
				0.325	8.26	0325		0.444	11.28	0.342	8.69	74
				0.394	10.00	0394		0.446	11.33	0.331	8.41	78
				0.472	12.00	0472		0.438	11.13	0.318	8.08	80
				0.500	12.70	0500		0.452	11.48	0.327	8.31	80
				0.615	15.62	0615		0.475	12.07	0.376	9.55	82

■ Lead Screw Compatibility: NTB Series

Dian	neter	Diameter Code	Le	ad	LEAD CODE	Left Hand	Outside (for ref	Diameter erence)	Root Diameter (for reference)		Efficiency %*
inches	mm		inches	mm		Available	inches	mm	inches	mm	
			0.050	1.27	0050		0.495	12.57	0.433	11.00	29
			0.079	2.00	0079		0.473	12.01	0.355	9.02	41
			0.098	2.50	0098		0.500	12.70	0.383	9.73	46
			0.100	2.54	0100	•	0.490	12.45	0.364	9.25	46
			0.125	3.18	0125		0.500	12.70	0.374	9.50	51
			0.157	4.00	0157		0.500	12.70	0.384	9.75	58
			0.160	4.06	0160		0.500	12.70	0.388	9.86	67
			0.1667	4.23	0167		0.500	12.70	0.384	9.75	58
			0.197	5.00	0197		0.500	12.70	0.365	9.27	62
			0.200	5.08	0200	•	0.492	12.50	0.366	9.30	63
1/2	13	050	0.250	6.35	0250		0.500	12.70	0.382	9.70	67
1/2	13	030	0.333	8.46	0333	•	0.497	12.62	0.362	9.19	73
			0.394	10.00	0394		0.497	12.62	0.362	9.19	76
			0.400	10.16	0400		0.497	12.62	0.364	9.25	76
			0.500	12.70	0500		0.488	12.40	0.352	8.94	79
			0.630	16.00	0630		0.500	12.70	0.374	9.50	80
			0.750	19.05	0750		0.525	13.34	0.399	10.13	83
			0.800	20.32	0800		0.500	12.70	0.370	9.40	83
			0.984	25.00	0984		0.500	12.70	0.369	9.37	84
			1.000	25.40	1000	•	0.490	12.45	0.372	9.45	84
			1.500	38.10	1500		0.490	12.45	0.374	9.50	85
			2.000	50.80	2000		0.488	12.40	0.378	9.60	87
			0.100	2.54	0100		0.615	15.62	0.498	12.65	40
			0.125	3.18	0125	•	0.625	15.88	0.470	11.94	45
			0.200	5.08	0200		0.625	15.88	0.495	12.57	53
			0.250	6.35	0250		0.625	15.88	0.469	11.91	63
			0.315	8.00	0315		0.627	15.93	0.493	12.52	68
5/8	16	062	0.410	10.41	0410	•	0.625	15.88	0.481	12.22	72
5/0	10	002	0.500	12.70	0500	•	0.625	15.88	0.478	12.14	76
			0.630	16.00	0630		0.625	15.88	0.491	12.47	78
			1.000	25.40	1000		0.625	15.88	0.481	12.22	83
			1.500	38.10	1500		0.625	15.88	0.499	12.67	85
			1.575	40.00	1575	•	0.625	15.88	0.499	12.67	86
			2.000	50.80	2000	•	0.625	15.88	0.499	12.67	86

Shaded areas have been translated from their designed inch or mm dimension to an equivalent mm or inch dimension.

www.haydonkerkpittman.com

^{*} Listed efficiencies are theoretical values based on Kerkote® TFE coated lead screw

** Listed efficiencies for Micro screws are theoretical values based on non-coated lead screws

***Back-drive threshold is 50±10%

■ Lead Screw Compatibility: NTB Series

Dian	neter	Diameter Code	Le	ad	LEAD CODE	Left Hand Available	Outside (for ref	Diameter erence)		iameter erence)	Efficiency %*
inches	mm		inches	mm		Available	inches	mm	inches	mm	
			0.0625	1.59	0063		0.750	19.05	0.671	17.04	25
			0.098	2.50	0098		0.742	18.85	0.626	15.90	35
			0.100	2.54	0100	•	0.746	18.95	0.624	15.85	35
			0.1667	4.23	0167		0.727	18.47	0.645	16.38	47
			0.197	5.00	0197		0.745	18.92	0.624	15.85	51
			0.200	5.08	0200		0.741	18.82	0.632	16.05	52
			0.250	6.35	0250		0.731	18.57	0.639	16.23	57
			0.276	7.00	0276		0.750	19.05	0.624	15.85	59
			0.333	8.46	0333		0.750	19.05	0.624	15.85	64
			0.394	10.00	0394		0.745	18.92	0.619	15.72	67
			0.500	12.70	0500		0.744	18.90	0.624	15.85	73
2/4	10	075	0.551	14.00	0551		0.750	19.05	0.624	15.85	73
3/4	19	075	0.591	15.00	0591		0.749	19.02	0.623	15.82	74
			0.709	18.00	0709		0.780	19.81	0.650	16.51	77
			0.748	19.00	0748		0.672	17.07	0.547	13.89	80
			0.787	20.00	0787		0.780	19.81	0.648	16.46	78
			0.800	20.32	0800		0.750	19.05	0.618	15.70	79
			0.945	24.00	0945	•	0.734	18.64	0.633	16.08	80
			1.000	25.40	1000	•	0.743	18.87	0.619	15.72	81
			1.500	38.10	1500		0.712	18.08	0.590	14.99	84
			1.969	50.00	1969	•	0.751	19.08	0.620	15.75	84
			2.000	50.80	2000	•	0.742	18.85	0.611	15.52	84
			2.400	60.96	2400	•	0.750	19.05	0.620	15.75	84
			3.622	92.00	3622	•	0.750	19.05	0.634	16.10	87
			0.200	5.08	0200	•	0.870	22.10	0.742	18.85	48
			0.236	6.00	0236		0.848	21.54	0.773	19.63	52
			0.250	6.35	0250		0.875	22.23	0.749	19.02	53
			0.394	10.00	0394		0.875	22.23	0.741	18.82	65
7/8	22	087	0.500	12.70	0500		0.862	21.89	0.744	18.90	69
170	22	007	0.630	16.00	0630		0.875	22.23	0.741	18.82	73
			0.667	16.94	0667		0.871	22.12	0.745	18.92	74
			0.787	20.00	0787		0.875	22.23	0.741	18.82	78
			0.945	24.00	0945		0.875	22.23	0.741	18.82	79
			1.000	25.40	1000		0.871	22.12	0.742	18.85	80
			0.050	1.27	0050	LH Only	0.938	23.83	0.874	22.20	17
5/16	24	093	2.000	50.80	2000		0.927	23.55	0.815	20.70	85
			3.000	76.20	3000	•	0.939	23.85	0.803	20.40	86

Shaded areas have been translated from their designed inch or mm dimension to an $\,$ equivalent mm or inch dimension

NTG Nut Series

Compact size, zero backlash, minimal drag torque. The adjustable NTG Series offers a cost effective anti-backlash assembly for applications requiring precise positional accuracy, repeatability, and smoothness. The NTG has been developed specifically for demanding applications that require zero backlash with minimal drag torque. With its compact size and no moving components, the NTG can also be easily incorporated into customer specified, custom molded parts.

An integral part of the NTG design is the ability to manually adjust the drag torque setting to match specific requirements of the application. This drag torque can also be set at the factory to meet individual customer specifications. This is especially effective with fine leads.

The standard NTG unit utilizes a self-lubricating polyacetal nut on a precision rolled 303 stainless steel screw. End machining to customer specifications and Kerkote® TFE screw coating are optional.

NTG Mini Nut Series

The NTG Mini Series brings quality, precision and value to miniature lead screw assemblies that require a small-scale anti-backlash function and control of drag torque.

Grease Compatibility

Coatings	Compatible
Kerkote® TFE Coating	YES
Black Ice® TFE Coating	YES
Grease	YES

Anti-Backlash Life

Without Kerkote® TFE Coating inch / (cm)	With Kerkote® TFE Coating inch / (cm)
5 to 10 million	15 to 40 million
(12 to 25 million)	(38 to 100 million)

Anti-backlash life is defined as the nut's ability to compensate for wear while maintaining its zero backlash properties. Above life data is based on 25% of the dynamic load rating. Life will vary with loading, operating environment, and duty cycle. The longer screw leads generally provide longer life.

NTG Series Nut Assembly NTG Mini Series Nut Assembly

Technical Data

Material	Polyacetal, Lubricant Additive
Tensile Strength	9,700 psi
Coefficient of Expansion	6.0 x 10 –5 in/in/°F
Coefficent of Friction Polyacetal Nut to Screw	Static = .08 .08 ** Dynamic = .15 .09 **
Standard Operating Temperature Range	32 - 200° F* (0 - 93° C)*

* Very high or low temperatures may cause significant changes in the nut fit or drag torque. Please call the HKP Engineering Team at 603 213 6290 for optional temperature range materials.

** with Kerkote® TFE Coating.

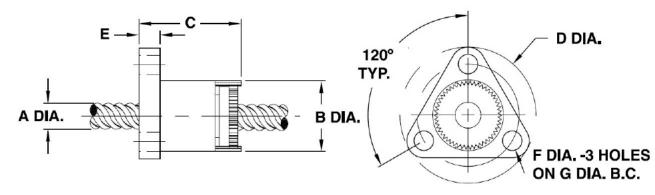
Identifying the NTG Series Nut Part Number Codes when Ordering

NTG	Α	K	R	025	0050	XXXX
Prefix	Nut Mounting Style	Lubrication	Thread Direction	Diameter Code	Nominal Thread Lead Code	Unique Identifier
NTG	 A = Flanged (Triangular) T = Threaded X = Custom Mini Series Only: B = Barrel m R = Rectangular m 	S = Uncoated K = Kerkote® TFE Coating N = Nut only B = Black Ice® TFE Coating	R = Right hand L = Left hand (Not Available for Micro Series) (Refer to lead screw charts for availability	012 ^m = .125 in (3.2 mm) 013 ^m = .133 in (3.3 mm) 014 ^m = .141 in (3.6 mm) 016 ^m = .156 in (4 mm) 018 ^m = .188 in (5 mm) 021 ^m = .219 in (5.6 mm) 025 = .250 in (6 mm) 031 = .313 in (8 mm) 037 = .375 in (10 mm)	(Refer to LEAD CODE Specifications charts, pages 4 to 6)	Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (–) as shown above. For assistance call our Engineering Team at 603 213 6290.

^{*} Listed efficiencies are theoretical values based on Kerkote® TFE coated lead screw

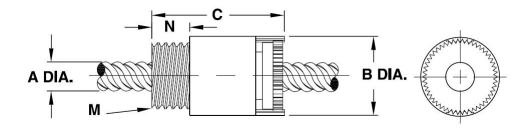
^{**} Listed efficiencies for Micro screws are theoretical values based on non-coated lead screws


✓ NTG Nut Series • Compact Adjustable Anti-Backlash

Dimensional Drawings

NTG Flange Mount

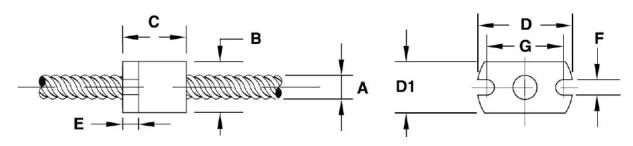
NTGA Flange	Screw Diam. A inch (mm)	Nut Diam. B inch (mm)	Nut Length C inch (mm)	Flange Diam. D inch (mm)	Flange Thickness E inch (mm)	Mounting Hole Diam. F inch (mm)	Bolt Circle Diam. G inch (mm)	Dynamic Load lbs (Kg)	Drag Torque oz-in (N-m)
Mount	1/4 (6)	.52 (13.2)	.8 (20.3)	1.00 (25.4)	.16 (4.0)	.143 (3.63)	.750 (19.1)	10 (4.5)	.5-2 (.004014)
	5/16 (8)	.80 (20.3)	1.0 (25.4)	1.50 (38.1)	.20 (5.1)	.197 (5.00)	1.125 (28.6)	20 (9.1)	1-3 (.00702)
	3/8 (10)	.80 (20.3)	1.0 (25.4)	1.50 (38.1)	.20 (5.1)	.197 (5.00)	1.125 (28.6)	20 (9.1)	1-3 (.00702)


Metric numbers are for reference only.

NTG Thread Mount

	Screw Diam. A	Nut Diam. B	Nut Length C	Thread M*	Thread Length N	Dynamic Load**	Drag Torque
NTGT	inch (mm)	inch (mm)	inch (mm)	inch	inch (mm)	lbs (Kg)	oz-in (N-m)
Tread Mount	1/4 (6)	.520 (13.2)	.9 (22)	7/16 - 20	.250 (6.35)	10 (4.5)	.5-2 (.004014)
	5/16 (8)	.800 (20.3)	1.2 (30)	3/4 - 20	.375 (9.53)	20 (9.1)	1-3 (.00702)
	3/8 (10)	.800 (20.3)	1.2 (30)	3/4 - 20	.375 (9.53)	20 (9.1)	1-3 (.00702)

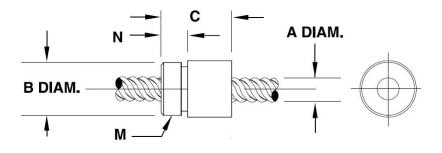
Metric numbers are for reference only.



Dimensional Tole	erances		
Incl	hes	Metric ((mm)
.X	± .02	< L 4	± 0.1
.XX	± .010	4 < L ≤ 16	± 0.15
.XXX	± .005	16 < L ≤ 63	± 0.2
		63 < L ≤ 250	± 0.3

NTG Mini Flange Mount

NTGR Mini Flange	Screw Diam. A inch (mm)	Nut Diam. B inch (mm)	Nut Length C inch (mm)	Flang Height D1 inch (mm)	Flange Diam. D inch (mm)	Flange Thickness E inch (mm)	Mounting Hole Diam. F inch (mm)	Bolt Circle Diam. G inch (mm)	Dynamic Load lbs (Kg)	Drag Torque oz-in (N-m)
Mount	1/8 inch through 7/32 inch (3 mm through 5.6 mm)	0.40 (10.2)	0.50 (13)	0.40 (10.2)	0.75 (19.1)	0.13 (3.2)	0.120 (3.05)	0.600 (15.24)	5 (2.3)	0.5 (.004)


Metric numbers are for reference only.

NTG Mini Thread Mount

	NTGT Tread	Screw Diam. A inch (mm)	Nut Diam. B inch (mm)	Nut Length C inch (mm)	Thread M* inch	Thread Length N inch (mm)	Dynamic Load** lbs (Kg)	Drag Torque oz-in (N-m)
Mount	1/8 inch through 7/32 inch (3 mm through 5.6 mm)	0.40 (10.2)	0.50 (13)	3/8-24	0.160 (4.06)	5 (2.3)	0.5 (.004)	

Metric numbers are for reference only.

✓ NTG Nut Series • Compact Adjustable Anti-Backlash

■ Lead Screw Compatibility: NTG Series

		Diameter					Outside l	Diameter	Root D	iameter	
Dian	neter	Code	Le	ead	LEAD CODE	Left Hand	(for ref			erence)	Efficiency %*
inches	mm		inches	mm		Available	inches	mm	inches	mm	
			0.024	0.61	0024		0.129	3.28	0.093	2.36	44
			0.039	1.00	0039		0.129	3.28	0.094	2.39	57
			0.048	1.22	0048		0.129	3.28	0.093	2.36	61
1/8	3.2	012	0.075	1.91	0075		0.129	3.28	0.093	2.36	70
			0.096	2.44	0096	•	0.129	3.28	0.093	2.36	75
			0.125	3.18	0125	LH Only	0.125	3.18	0.078	1.98	80
			0.020	0.50	0020		0.132	3.35	0.104	2.64	42
			0.039	1.00	0039		0.132	3.35	0.080	2.03	61
.132	3.3	013	0.079	2.00	0079		0.132	3.35	0.080	2.03	75
			0.157	4.00	0157		0.132	3.35	0.080	2.03	84
			0.315	8.00	0315		0.132	3.35	0.080	2.03	87
		014	0.012	0.30	0012		0.140	3.56	0.123	3.12	26
			0.024	0.61	0024		0.140	3.56	0.105	2.67	43
9/64	3.6		0.048	1.22	0048		0.140	3.56	0.081	2.06	62
			0.096	2.44	0096		0.140	3.56	0.081	2.06	75
			0.394	10.00	0394		0.140	3.56	0.102	2.59	86
			0.033	0.84	0033	•	0.156	3.96	0.116	2.95	45
			0.050	1.27	0050	LH Only	0.156	3.96	0.096	2.44	59
			0.094	2.39	0094		0.164	4.17	0.128	3.25	67
5/32	4	016	0.125	3.18	0125		0.168	4.27	0.130	3.30	74
			0.250	6.35	0250		0.156	3.96	0.130	3.30	83
			0.375	9.53	0375		0.156	3.96	0.130	3.30	85
			0.500	12.70	0500		0.156	3.96	0.130	3.30	86
			0.020	0.50	0020		0.188	4.78	0.163	4.14	30
			0.025	0.64	0025		0.188	4.78	0.150	3.81	39
			0.039	1.00	0039		0.188	4.78	0.144	3.66	47
			0.050	1.27	0050		0.188	4.78	0.124	3.15	58
			0.100	2.54	0100		0.188	4.78	0.136	3.45	69
316	5	018	0.1875	4.76	0188		0.188	4.78	0.167	4.24	78
			0.200	5.08	0200		0.188	4.78	0.124	3.15	82
			0.375	9.53	0375		0.188	4.78	0.161	4.09	84
			0.400	10.16	0400		0.188	4.78	0.124	3.15	84
			0.427	10.85	0427		0.188	4.78	0.162	4.11	85
			0.500	12.70	0500	•	0.188	4.78	0.142	3.61	86
			0.024	0.61	0024		0.218	5.54	0.181	4.60	31
			0.03125	0.79	0031		0.204	5.18	0.160	4.06	39
			0.048	1.22	0048		0.216	5.49	0.156	3.96	50
7/00	F.0	004	0.050	1.27	0050		0.200	5.08	0.135	3.43	52
7/32	5.6	021	0.0625	1.59	0063		0.218	5.54	0.142	3.61	60
			0.096	2.44	0096	•	0.218	5.54	0.156	3.96	66
			0.192	4.88	0192		0.218	5.54	0.156	3.96	78
			0.250	6.35	0250		0.204	5.18	0.140	3.56	81
			0.384	9.75	0384		0.218	5.54	0.159	4.04	86

Shaded areas have been translated from their designed inch or mm dimension to an equivalent mm or inch dimension.

■ Lead Screw Compatibility: NTG Series

Niar	neter	Diameter	1.0	ad			Outside	Diameter	Root D	iameter		
Diai	Herei	Code	Lo	au	LEAD CODE	Left Hand Available	(for ref	erence)	(for ref	erence)	Efficiency %*	
inches	mm		inches	mm		Availabio	inches	mm	inches	mm		
			0.024	0.61	0024		0.250	6.35	0.218	5.54	28	
			0.025	0.64	0025		0.250	6.35	0.214	5.44	30	
			0.03125	0.79	0031		0.250	6.35	0.208	5.28	34	
		0.039	1.00	0039		0.250	6.35	0.190	4.83	40		
			0.048	1.22	0048		0.250	6.35	0.190	4.83	45	
			0.050	1.27	0050	•	0.250	6.35	0.191	4.85	46	
			0.059	1.50	0059		0.250	6.35	0.172	4.37	52	
			0.0625	1.59	0063		0.250	6.35	0.170	4.32	52	
			0.079	2.00	0079		0.250	6.35	0.170	4.32	59	
			0.096	2.44	0096		0.250	6.35	0.190	4.83	61	
			0.100	2.54	0100		0.250	6.35	0.190	4.83	62	
1/4	6	025	0.118	3.00	0118		0.250	6.35	0.175	4.45	68	
			0.125	3.18	0125		0.250	6.35	0.190	4.83	67	
			0.197	5.00	0197		0.250	6.35	0.172	4.37	72	
			0.200	5.08	0200		0.250	6.35	0.170	4.32	65	
			0.250	6.35	0250	•	0.250	6.35	0.168	4.27	79	
			0.3125	7.94	0313		0.250	6.35	0.184	4.67	81	
			0.333	8.46	0333		0.250	6.35	0.170	4.32	82	
			0.394	10.00	0394		0.250	6.35	0.170	4.32	78	
			0.400	10.16	0400		0.250	6.35	0.170	4.32	84	
			0.500	12.70	0500	•	0.250	6.35	0.169	4.29	85	
			0.750	19.05	0750		0.250	6.35	0.170	4.32	86	
			1.000	25.40	1000	•	0.250	6.35	0.170	4.32	84	
			0.039	1.00	0039		0.315	8.00	0.261	6.63	34	
			0.057	1.44	0057		0.315	8.00	0.243	6.17	43	
			0.0741	1.88	0074		0.312	7.92	0.211	5.36	51	
5/16 8	8	031	0.111	2.82	0111		0.312	7.92	0.232	5.89	60	
G/ 10	J	001	0.167	4.24	0167		0.312	7.92	0.211	5.36	69	
			0.250	6.35	0250		0.312	7.92	0.234	5.94	76	
			0.500	12.70	0500		0.312	7.92	0.232	5.89	83	
			0.800	20.32	0800		0.306	7.77	0.243	6.17	86	

Shaded areas have been translated from their designed inch or mm dimension to an equivalent mm or inch dimension.

METEK 27

^{*} Listed efficiencies are theoretical values based on Kerkote® TFE coated lead screw
** Listed efficiencies for Micro screws are theoretical values based on non-coated lead screws

^{***}Back-drive threshold is 50±10%

^{*} Listed efficiencies are theoretical values based on Kerkote® TFE coated lead screw

** Listed efficiencies for Micro screws are theoretical values based on non-coated lead screws

***Back-drive threshold is 50±10%

Lead Screw Compatibility: NTG Series

Dian	Diameter		Le	ad	LEAD CODE	Left Hand Available	Outside I (for ref			iameter erence)	Efficiency %*
inches	mm		inches	mm			inches	mm	inches	mm	
			0.025	0.64	0025		0.375	9.53	0.337	8.56	21
			0.039	1.00	0039		0.394	10.01	0.350	8.89	28
			0.04167	1.06	0042		0.375	9.53	0.320	8.13	34
			0.050	1.27	0050	•	0.375	9.53	0.301	7.65	36
			0.055	1.40	0055		0.375	9.53	0.303	7.70	38
			0.059	1.50	0059	•	0.389	9.88	0.313	7.95	38
			0.0625	1.59	0063	•	0.388	9.86	0.295	7.49	41
			0.068	1.73	0068		0.388	9.86	0.295	7.49	42
			0.079	2.00	0079		0.375	9.53	0.264	6.71	47
			0.0833	2.12	0083		0.375	9.53	0.293	7.44	48
			0.100	2.54	0100	•	0.375	9.53	0.266	6.76	53
			0.125	3.18	0125	•	0.375	9.53	0.295	7.49	59
			0.157	4.00	0157		0.375	9.53	0.274	6.96	65
			0.1667	4.23	0167		0.371	9.42	0.261	6.63	61
			0.197	5.00	0197		0.375	9.53	0.266	6.76	69
3/8	10	037	0.200	5.08	0200	•	0.375	9.53	0.266	6.76	69
3/0	10	037	0.250	6.35	0250		0.375	9.53	0.268	6.81	70
			0.300	7.62	0300		0.375	9.53	0.255	6.48	76
			0.333	8.46	0333		0.375	9.53	0.245	6.22	78
			0.363	9.22	0363	•	0.375	9.53	0.260	6.60	79
			0.375	9.53	0375		0.375	9.53	0.265	6.73	79
			0.394	10.00	0394		0.375	9.53	0.260	6.60	79
			0.400	10.16	0400		0.375	9.53	0.293	7.44	79
			0.472	12.00	0472		0.388	9.86	0.287	7.29	82
			0.500	12.70	0500	•	0.388	9.86	0.265	6.73	81
			0.667	16.94	0667		0.375	9.53	0.273	6.93	83
			0.667	19.05	0750		0.388	9.86	0.273	6.93	84
			0.984	25.00	0984		0.375	9.53	0.262	6.65	84
			1.000	25.40	1000		0.383	9.73	0.254	6.45	84
			1.200	30.48	1200	•	0.383	9.73	0.254	6.45	84
			1.250	31.75	1250		0.375	9.53	0.278	7.06	84
			1.500	38.10	1500		0.375	9.53	0.264	6.71	83

Shaded areas have been translated from their designed inch or mm dimension to an equivalent mm or inch dimension.

VHD Nut Series

The VHD Series anti-backlash assembly provides the maximum load carrying capability and the highest axial and radial stiffness of any Kerk® nut assembly. Designed for smooth, quiet operation and long life, the VHD assembly provides low drag torque by making use of the patented Kerk AXIAL TAKE-UP MECHANISM (see Lead screw Assemblies: Anti-Backlash Technologies section). Drag and wear associated with high pre-load forces are eliminated with the VHD Series. Screws are 303 stainless steel with Kerk's custom Kerkote® TFE extended life coating optional. Assemblies are available cut-to-length or with screws machined to your requirements.

Technical Data

Material	Polyacetal, Lubricant Additive					
Tensile Strength	9,700 psi					
Coefficient of Expansion	6.0 x 10 -5 in/in/°F					
Coefficent of Friction Polyacetal Nut to Screw	Static = .08 .08 ** Dynamic = .15 .09 **					
Standard Operating Temperature Range	32 - 200° F* (0 - 93° C)*					

* Very high or low temperatures may cause significant changes in the nut fit or drag torque. Please call the HKP Engineering Team at 603 213 6290 for optional temperature range materials.

** with Kerkote® TFE Coating.

Grease Compatibility

Coatings	Compatible
Kerkote® TFE Coating	YES
Black Ice® TFE Coating	YES
Grease	NO

Anti-Backlash Life

Without Kerkote® TFE Coating inch / (cm)	With Kerkote® TFE Coating inch / (cm)
200 to 225 million	300 to 350 million
(500 to 570 million)	(760 to 880 million)

Anti-backlash life is defined as the nut's ability to compensate for wear while maintaining its zero backlash properties. Above life data is based on 25% of the dynamic load rating. Life will vary with loading, operating environment, and duty cycle. The longer screw leads generally provide longer life.

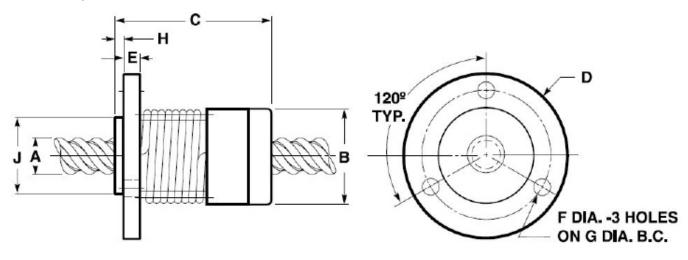
Identifying the VHD Series Nut Part Number Codes when Ordering

VHD	F	S	R	062	_	0125	_	XXXX
Prefix	Nut Mounting Style	Lubrication	Thread Direction	Diameter Code		Nominal Thread Lead Code		Unique Identifier
VHD	F = Flanged (Round) T = Threaded X = Custom	S = Uncoated K = Kerkote® TFE Coating N = Nut only B = Black Ice® TFE Coating	R = Right hand L = Left hand (Not Available for Micro Series) (Refer to lead screw charts for availability	050 = .500 in (13 mm) 062 = .625 in (16 mm) 075 = .750 in (19 mm) 087 = .875 in (22 mm)		(Refer to LEAD CODE Specifications charts, pages 3 to 4)		Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (–) as shown above. For assistance call our Engineering Team at 603 213 6290.

VHD Series Nut Assemblies VHD Series Nut

^{*} Listed efficiencies are theoretical values based on Kerkote® TFE coated lead screw
** Listed efficiencies for Micro screws are theoretical values based on non-coated lead screws

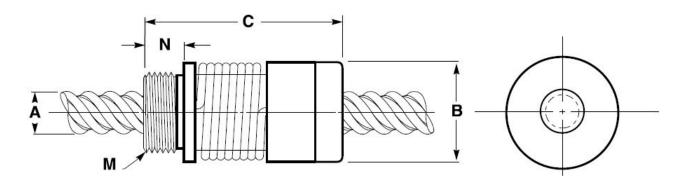

✓ VHD Nut Series • Maximum Load Anti-Backlash

Dimensional Drawings

VHD Flange Mount

VHDF	Screw Diam. A inch (mm)	Nut Diam. B inch (mm)	Nut Length C inch (mm)	Flange Diam. D inch (mm)	Flange Thickness E inch (mm)	Mounting Hole Diam. F inch (mm)	Bolt Circle Diam. G inch (mm)	Hub Width H inch (mm)	Hub Diam. J inch (mm)	Dynamic Load lbs (Kg)	Drag Torque oz-in (N-m)
Flange	1/2 (13)	1.12 (28.5)	2.3 (59)	1.75 (44.5)	.23 (5.9)	.22 (5.60)	1.406 (35.71)	.12 (3.1)	.93 (23.62)	150 (68)	2-6 (.01402)
Mount	5/8 (16)	1.38 (35.1)	2.6 (66)	2.08 (53)	.28 (7.1)	.22 (5.60)	1.750 (44.45)	N/A	N/A	250 (113)	2-6 (.01402)
	3/4 (19)	1.62 (41.2)	2.8 (71)	2.38 (60.5)	.31 (7.9)	.22 (5.60)	2.000 (50.80)	N/A	N/A	350 (159)	3-7 (.0205)
	7/8 (22)	1.62 (41.2)	2.8 (71)	2.38 (60.5)	.31 (7.9)	.22 (5.60)	2.000 (50.80)	N/A	N/A	350 (159)	3-7 (.0205)

Metric numbers are for reference only.



VHD Thread Mount

	Screw Diam. A	Nut Diam. B	Nut Length C	Thread M*	Thread Length N	Dynamic Load**	Drag Torque
VHDT	inch (mm)	inch (mm)	inch (mm)	inch (mm)	inch (mm)	lbs (Kg)	oz-in (N-m)
Tread	1/2 (13)	1.12 (28.5)	2.5 (64)	15/16-16	.50 (12.7)	150 (68)	2-6 (.01404)
Mount	5/8 (16)	1.38 (35.1)	2.8 (72)	1 1/4-16	.50 (12.7)	250 (113)	2-6 (.01404)
	3/4 (19)	1.62 (41.2)	3.12 (79)	1 3/8-16	.50 (12.7)	350 (159)	3-7 (.0205)
	7/8 (22)	1.62 (41.2)	3.12 (79)	1 3/8-16	.50 (12.7)	350 (159)	3-7 (.0205)

Dimensional Tolerances									
Inc	hes	Metric (mm)							
.X	± .02	< L 4	± 0.1						
.XX	± .010	4 < L ≤ 16	± 0.15						
.XXX	± .005	16 < L ≤ 63	± 0.2						
		63 < L ≤ 250	± 0.3						

Metric numbers are for reference only.

■ Lead screw Compatibility: VHD Series

Diameter		Diameter	Lead			Loft Hand	Outside Diameter		Root Diameter		
Diai	illotoi	Code		Juu	LEAD CODE	Left Hand Available	(for ref	erence)	(for ref	erence)	Efficiency %*
inches	mm		inches	mm		7110110010	inches	mm	inches	mm	
			0.050	1.27	0050		0.495	12.57	0.433	11.00	29
			0.079	2.00	0079		0.473	12.01	0.355	9.02	41
			0.098	2.50	0098		0.500	12.70	0.383	9.73	46
			0.100	2.54	0100	•	0.490	12.45	0.364	9.25	46
			0.125	3.18	0125		0.500	12.70	0.374	9.50	51
			0.157	4.00	0157		0.500	12.70	0.384	9.75	58
			0.160	4.06	0160		0.500	12.70	0.388	9.86	67
			0.1667	4.23	0167		0.500	12.70	0.384	9.75	58
			0.197	5.00	0197		0.500	12.70	0.365	9.27	62
			0.200	5.08	0200	•	0.492	12.50	0.366	9.30	63
4.00	40	050	0.250	6.35	0250		0.500	12.70	0.382	9.70	67
1/2	13	050	0.333	8.46	0333	•	0.497	12.62	0.362	9.19	73
			0.394	10.00	0394		0.497	12.62	0.362	9.19	76
			0.400	10.16	0400		0.497	12.62	0.364	9.25	76
			0.500	12.70	0500		0.488	12.40	0.352	8.94	79
			0.630	16.00	0630		0.500	12.70	0.374	9.50	80
			0.750	19.05	0750		0.525	13.34	0.399	10.13	83
			0.800	20.32	0800		0.500	12.70	0.370	9.40	83
			0.984	25.00	0984		0.500	12.70	0.369	9.37	84
			1.000	25.40	1000	•	0.490	12.45	0.372	9.45	84
			1.500	38.10	1500		0.490	12.45	0.374	9.50	85
			2.000	50.80	2000		0.488	12.40	0.378	9.60	87
			0.100	2.54	0100		0.615	15.62	0.498	12.65	40
			0.125	3.18	0125	•	0.625	15.88	0.470	11.94	45
			0.200	5.08	0200		0.625	15.88	0.495	12.57	53
			0.250	6.35	0250		0.625	15.88	0.469	11.91	63
			0.315	8.00	0315		0.627	15.93	0.493	12.52	68
- 10			0.410	10.41	0410	•	0.625	15.88	0.481	12.22	72
5/8	16	062	0.500	12.70	0500	•	0.625	15.88	0.478	12.14	76
			0.630	16.00	0630		0.625	15.88	0.491	12.47	78
			1.000	25.40	1000		0.625	15.88	0.481	12.22	83
			1.500	38.10	1500		0.625	15.88	0.499	12.67	85
			1.575	40.00	1575	•	0.625	15.88	0.499	12.67	86
			2.000	50.80	2000	•	0.625	15.88	0.499	12.67	86

Shaded areas have been translated from their designed inch or mm dimension to an equivalent mm or inch dimension.

30 **Haydon kerk**

^{*}Listed efficiencies are theoretical values based on Kerkote® TFE coated lead screw

**Listed efficiencies for Micro screws are theoretical values based on non-coated lead screws

***Back-drive threshold is 50±10%

■ Lead Screw Compatibility: VHD Series

Diameter		Diameter	Lead				Outside l	Diameter	Root Diameter		
Dian	ieter	Code	Le	au	LEAD CODE	Left Hand Available	(for ref	erence)	(for ref	erence)	Efficiency %*
inches	mm		inches	mm		Available	inches	mm	inches	mm	
			0.0625	1.59	0063		0.750	19.05	0.671	17.04	25
			0.098	2.50	0098		0.742	18.85	0.626	15.90	35
			0.100	2.54	0100	•	0.746	18.95	0.624	15.85	35
			0.1667	4.23	0167		0.727	18.47	0.645	16.38	47
			0.197	5.00	0197		0.745	18.92	0.624	15.85	51
			0.200	5.08	0200		0.741	18.82	0.632	16.05	52
			0.250	6.35	0250		0.731	18.57	0.639	16.23	57
			0.276	7.00	0276		0.750	19.05	0.624	15.85	59
			0.333	8.46	0333		0.750	19.05	0.624	15.85	64
			0.394	10.00	0394		0.745	18.92	0.619	15.72	67
			0.500	12.70	0500		0.744	18.90	0.624	15.85	73
3/4	19	075	0.551	14.00	0551		0.750	19.05	0.624	15.85	73
3/4	19	0/3	0.591	15.00	0591		0.749	19.02	0.623	15.82	74
			0.709	18.00	0709		0.780	19.81	0.650	16.51	77
			0.748	19.00	0748		0.672	17.07	0.547	13.89	80
			0.787	20.00	0787		0.780	19.81	0.648	16.46	78
			0.800	20.32	0800		0.750	19.05	0.618	15.70	79
			0.945	24.00	0945	•	0.734	18.64	0.633	16.08	80
			1.000	25.40	1000	•	0.743	18.87	0.619	15.72	81
			1.500	38.10	1500		0.712	18.08	0.590	14.99	84
			1.969	50.00	1969	•	0.751	19.08	0.620	15.75	84
			2.000	50.80	2000	•	0.742	18.85	0.611	15.52	84
			2.400	60.96	2400	•	0.750	19.05	0.620	15.75	84
			3.622	92.00	3622	•	0.750	19.05	0.634	16.10	87
			0.200	5.08	0200	•	0.870	22.10	0.742	18.85	48
			0.236	6.00	0236		0.848	21.54	0.773	19.63	52
			0.250	6.35	0250		0.875	22.23	0.749	19.02	53
			0.394	10.00	0394		0.875	22.23	0.741	18.82	65
7/8	22	007	0.500	12.70	0500		0.862	21.89	0.744	18.90	69
1/0	22	087	0.630	16.00	0630		0.875	22.23	0.741	18.82	73
			0.667	16.94	0667		0.871	22.12	0.745	18.92	74
			0.787	20.00	0787		0.875	22.23	0.741	18.82	78
			0.945	24.00	0945		0.875	22.23	0.741	18.82	79
			1.000	25.40	1000		0.871	22.12	0.742	18.85	80

Shaded areas have been translated from their designed inch or mm dimension to an equivalent mm or inch dimension.

WDG Nut Series

An economical anti-backlash nut assembly that provides precise positional accuracy and repeatability.

The WDG Series anti-backlash assembly utilizes an exceptionally compact design to provide stiffness and balanced accuracy for precise positioning. The unique wedge design locks the nut at the correct preload without excessive drag.

Shorter than other self-compensating nuts with similar performance, the WDG nut permits the design of smaller assemblies without sacrificing stroke length. Nut wear or momentary overload is accommodated through the WDG Series' compensation mechanism, which maintains positional accuracy in demanding applications.

Highlights

- Compact Size, Moderate Load
- Cost Effective

Grease Compatibility

Coatings	Compatible
Kerkote® TFE Coating	YES
Black Ice® TFE Coating	YES
Grease	NO

Anti-Backlash Life

Without Kerkote® TFE Coating inch / (cm)	With Kerkote® TFE Coating inch / (cm)
100 to 125 million	200 to 250 million
(250 to 315 million)	(500 to 635 million)

Anti-backlash life is defined as the nut's ability to compensate for wear while maintaining its zero backlash properties. Above life data is based on 25% of the dynamic load rating. Life will vary with loading, operating environment, and duty cycle. The longer screw leads generally provide longer life.

■ Technical Data

Material	Polyacetal, Lubricant Additive
Tensile Strength	9,700 psi
Coefficient of Expansion	6.0 x 10 -5
	in/in/°F
Coefficent of Friction Polyacetal Nut to Screw	Static = .08 .08 **
	Dynamic = .15 .09 **
Standard Operating Temperature Range	32 - 200° F*
	(0 - 93° C)*

^{*} Very high or low temperatures may cause significant changes in the nut fit or drag torque. Please call the HKP Engineering Team at 603 213 6290 for optional temperature range materials.

** with Kerkote® TFE Coating.

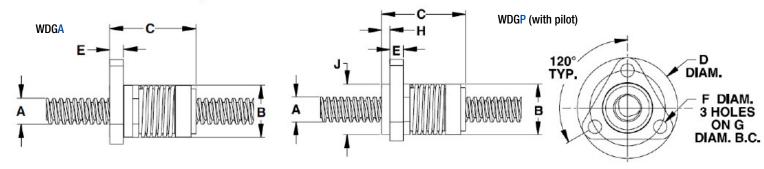
Identifying the WDG Series Nut Part Number Codes when Ordering

WDG	Α	K	R	018	0039	XXXX
Prefix	Nut Mounting Style	Lubrication	Thread Direction	Diameter Code	Nominal Thread Lead Code	Unique Identifier
WDG	A = Flanged (Triangular)P = Flange (Triangular with pilot)	S = Uncoated K = Kerkote® TFE Coating N = Nut only	R = Right handL = Left hand(Refer to lead screw)	018 = .188 in (5 mm) 021 = .219 in (5.6 mm) 025 = .250 in (6 mm)	(Refer to LEAD CODE Specifications charts, pages 3 to 5)	Proprietary suffix assigned to a specific customer application. The identifier can apply to either a
	T = Threaded Micro Series $X = $ Custom	B = Black Ice® TFE Coating	charts for availability	031 = .313 in (8 mm) 037 = .375 in (10 mm) 043 = .438 in (11 mm) 050 = .500 in (13 mm)		standard or custom part.

NOTE: Dashes must be included in Part Number (–) as shown above. For assistance call our Engineering Team at 603 213 6290.

^{*} Listed efficiencies are theoretical values based on Kerkote® TFE coated lead screw
** Listed efficiencies for Micro screws are theoretical values based on non-coated lead screws

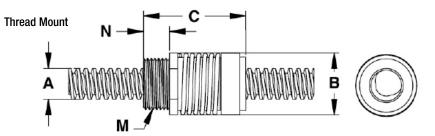
Dimensional Drawings


WDG Flange Mount and with pilot

	Screw Diam. A inch (mm)	Nut Diam. B inch (mm)	Nut Length C inch (mm)	Flange Diam. D inch (mm)	Flange Thickness E inch (mm)	Mounting Hole Diam. F inch (mm)	Bolt Circle Diam. G inch (mm)	Hub Length H inch (mm)	Hub Diam. J inch (mm)	Dynamic Load lbs (Kg)	Drag Torque oz-in (N-m)
WDGA Flange	3/16 (4)	0.625 (16)	1.05 (26.6)	1.125 (28.6)	0.160 (4.1)	0.143 (3.7)	0.875 (22.2)	0.08 (2.04)	0.625 (15.9)	10 (4.5)	4 (.03)
Mount	7/32 (5)	0.625 (16)	1.05 (26.6)	1.125 (28.6)	0.160 (4.1)	0.143 (3.7)	0.875 (22.2)	0.08 (2.04)	0.625 (15.9)	10 (4.5)	4 (.03)
& WDGP	1/4 (6)	0.625 (16)	1.05 (26.6)	1.125 (28.6)	0.160 (4.1)	0.143 (3.7)	0.875 (22.2)	0.08 (2.04)	0.625 (15.9)	10 (4.5)	4 (.03)
(with pilot)	5/16 (8)	0.750 (19)	1.32 (33.5)	1.5 (38.1)	0.200 (5.08)	0.200(5.08)	1.125 (28.6)	0.120 (3.05)	0.750 (19.1)	25 (11.3)	5 (.04)
	3/8 (10)	0.750 (19)	1.32 (33.5)	1.5 (38.1)	0.200 (5.08)	0.200(5.08)	1.125 (28.6)	0.120 (3.05)	0.750 (19.1)	25 (11.3)	5 (.04)
	7/16 (11)	1.00 (25.4)	2.078 (52.8)	1.750 (44.5)	0.250 (6.35)	0.220 (5.6)	1.406 (35.7)	0.255 (6.48)	1.000 (25.4)	75 (34)	9 (.06)
	1/2 (13)	1.00 (25.4)	2.078 (52.8)	1.750 (44.5)	0.250 (6.35)	0.220 (5.6)	1.406 (35.7)	0.255 (6.48)	1.000 (25.4)	75 (34)	9 (.06)

1metric available as required

2*other spring pre-loads available


Metric numbers are for reference only.

WDG Thread Mount

	Screw Diam. A inch (mm)	Nut Diam. B inch (mm)	Nut Length C inch (mm)	Thread M * inch (mm)	Thread Length N inch (mm)	Dynamic Load** lbs (Kg)	Drag Torque** oz-in (N-m)
	3/16 (4)	0.625 (16)	1.05 (26.6)	9/16 - 18	0.240 (6.1)	10 (4.5)	4 (.03)
WDGT	7/32 (5)	0.625 (16)	1.05 (26.6)	9/16 - 18	0.240 (6.1)	10 (4.5)	4 (.03)
Thread Mount	1/4 (6)	0.625 (16)	1.05 (26.6)	9/16 - 18	0.240 (6.1)	10 (4.5)	4 (.03)
mount	5/16 (8)	0.750 (19)	1.32 (33.5)	5/8 - 18	0.320 (8.1)	25 (11.3)	5 (.04)
	3/8 (10)	0.750 (19)	1.32 (33.5)	5/8 - 18	0.320 (8.1)	25 (11.3)	5 (.04)
	7/16 (11)	1.00 (25.4)	2.078 (52.8)	15/16 - 16	0.500 (12.7)	75 (34)	9 (.06)
	1/2 (13)	1.00 (25.4)	2.078 (52.8)	15/16 - 16	0.500 (12.7)	75 (34)	9 (.06)

1metric available as required 2*other spring pre-loads available Metric numbers are for reference only.

Dimension	Dimensional Tolerances						
Inc	hes	Metric (mm)					
.X	± .02	< L 4	± 0.1				
.XX	± .010	4 < L ≤ 16	± 0.15				
.XXX	± .005	16 < L ≤ 63	± 0.2				
		63 < L ≤ 250	± 0.3				

■ Lead Screw Compatibility: WDG Series

Diameter		Diameter Code	Le	ead	LEAD CODE	Left Hand	Outside Diameter (for reference)		Root Diameter (for reference)		Efficiency %*
inahaa	mm		inahaa	mm	LEAD CODE	Available	-				Efficiency %
inches	mm		inches	mm			inches	mm	inches	mm	
			0.020	0.50	0020		0.188	4.78	0.163	4.14	30
			0.025	0.64	0025		0.188	4.78	0.150	3.81	39
			0.039	1.00	0039		0.188	4.78	0.144	3.66	47
			0.050	1.27	0050		0.188	4.78	0.124	3.15	58
244	_		0.100	2.54	0100		0.188	4.78	0.136	3.45	69
3/16	5	018	0.1875	4.76	0188		0.188	4.78	0.167	4.24	78
			0.200	5.08	0200		0.188	4.78	0.124	3.15	82
			0.375	9.53	0375		0.188	4.78	0.161	4.09	84
			0.400	10.16	0400		0.188	4.78	0.124	3.15	84
			0.427	10.85	0427		0.188	4.78	0.162	4.11	85
			0.500	12.70	0500	•	0.188	4.78	0.142	3.61	86
			0.024	0.61	0024		0.218	5.54	0.181	4.60	31
			0.03125	0.79	0031		0.204	5.18	0.160	4.06	39
			0.048	1.22	0048		0.216	5.49	0.156	3.96	50
7/00	- 0	004	0.050	1.27	0050		0.200	5.08	0.135	3.43	52
7/32	5.6	021	0.0625	1.59	0063		0.218	5.54	0.142	3.61	60
			0.096	2.44	0096		0.218	5.54	0.156	3.96	66
			0.192	4.88	0192		0.218	5.54	0.156	3.96	78
			0.250	6.35	0250	•	0.204	5.18	0.140	3.56	81
			0.384	9.75	0384		0.218	5.54	0.159	4.04	86
			0.024	0.61	0024		0.250	6.35	0.218	5.54	28
			0.025	0.64	0025		0.250	6.35	0.214	5.44	30
			0.03125	0.79	0031		0.250	6.35	0.208	5.28	34
			0.039	1.00	0039		0.250	6.35	0.190	4.83	40
			0.048	1.22	0048	_	0.250	6.35	0.190	4.83	45
			0.050	1.27	0050	•	0.250	6.35	0.191	4.85	46
			0.059	1.50	0059		0.250	6.35	0.172	4.37	52
			0.0625	1.59	0063		0.250	6.35	0.170	4.32	52
			0.079	2.00	0079		0.250	6.35	0.170	4.32	59
			0.096	2.44	0096		0.250	6.35	0.190	4.83	61
414		005	0.100	2.54	0100		0.250	6.35	0.190	4.83	62
1/4	6	025	0.118	3.00	0118		0.250	6.35	0.175	4.45	68
			0.125	3.18	0125		0.250	6.35	0.190	4.83	67
			0.197	5.00	0197		0.250	6.35	0.172	4.37	72
			0.200	5.08	0200		0.250	6.35	0.170	4.32	65
			0.250	6.35	0250	•	0.250	6.35	0.168	4.27	79
			0.3125	7.94	0313		0.250	6.35	0.184	4.67	81
			0.333	8.46	0333		0.250	6.35	0.170	4.32	82
			0.394	10.00	0394		0.250	6.35	0.170	4.32	78
			0.400	10.16	0400		0.250	6.35	0.170	4.32	84
			0.500	12.70	0500	•	0.250	6.35	0.169	4.29	85
			0.750	19.05	0750		0.250	6.35	0.170	4.32	86
			1.000	25.40	1000	•	0.250	6.35	0.170	4.32	84

^{*} Listed efficiencies are theoretical values based on Kerkote® TFE coated lead screw

** Listed efficiencies for Micro screws are theoretical values based on non-coated lead screws

^{***}Back-drive threshold is 50±10%

✓ WDG Nut Series • General Purpose Anti-Backlash

Lead Screw Compatibility: WDG Series

D:		Diameter					Outside	Diameter	Root Diameter			
Dian	neter	Code	L€	ead	LEAD CODE	Left Hand Available	(for ref	erence)	(for ref	erence)	Efficiency %*	
inches	mm		inches	mm		Availabio	inches	mm	inches	mm		
			0.039	1.00	0039		0.315	8.00	0.261	6.63	34	
			0.057	1.44	0057		0.315	8.00	0.243	6.17	43	
			0.0741	1.88	0074		0.312	7.92	0.211	5.36	51	
5/16		031	0.111	2.82	0111		0.312	7.92	0.232	5.89	60	
3/10	8	031	0.167	4.24	0167		0.312	7.92	0.211	5.36	69	
			0.250	6.35	0250		0.312	7.92	0.234	5.94	76	
			0.500	12.70	0500		0.312	7.92	0.232	5.89	83	
			0.800	20.32	0800		0.306	7.77	0.243	6.17	86	
			0.025	0.64	0025		0.375	9.53	0.337	8.56	21	
			0.039	1.00	0039		0.394	10.01	0.350	8.89	28	
			0.04167	1.06	0042		0.375	9.53	0.320	8.13	34	
			0.050	1.27	0050	•	0.375	9.53	0.301	7.65	36	
			0.055	1.40	0055		0.375	9.53	0.303	7.70	38	
			0.059	1.50	0059	•	0.389	9.88	0.313	7.95	38	
			0.0625	1.59	0063	•	0.388	9.86	0.295	7.49	41	
			0.068	1.73	0068		0.388	9.86	0.295	7.49	42	
			0.079	2.00	0079		0.375	9.53	0.264	6.71	47	
			0.0833	2.12	0083		0.375	9.53	0.293	7.44	48	
			0.100	2.54	0100	•	0.375	9.53	0.266	6.76	53	
			0.125	3.18	0125	•	0.375	9.53	0.295	7.49	59	
			0.157	4.00	0157		0.375	9.53	0.274	6.96	65	
			0.1667	4.23	0167		0.371	9.42	0.261	6.63	61	
			0.197	5.00	0197		0.375	9.53	0.266	6.76	69	
3/8	10	037	0.200	5.08	0200	•	0.375	9.53	0.266	6.76	69	
0,0		001	0.250	6.35	0250		0.375	9.53	0.268	6.81	70	
			0.300	7.62	0300		0.375	9.53	0.255	6.48	76	
			0.333	8.46	0333		0.375	9.53	0.245	6.22	78	
			0.363	9.22	0363	•	0.375	9.53	0.260	6.60	79	
			0.375	9.53	0375		0.375	9.53	0.265	6.73	79	
			0.394	10.00	0394		0.375	9.53	0.260	6.60	79	
			0.400	10.16	0400		0.375	9.53	0.293	7.44	79	
			0.472	12.00	0472		0.388	9.86	0.287	7.29	82	
			0.500	12.70	0500	•	0.388	9.86	0.265	6.73	81	
			0.667	16.94	0667		0.375	9.53	0.273	6.93	83	
			0.667	19.05	0750		0.388	9.86	0.273	6.93	84	
			0.984	25.00	0984		0.375	9.53	0.262	6.65	84	
			1.000	25.40	1000		0.383	9.73	0.254	6.45	84	
			1.200	30.48	1200	•	0.383	9.73	0.254	6.45	84	
			1.250	31.75	1250		0.375	9.53	0.278	7.06	84	
			1.500	38.10	1500		0.375	9.53	0.264	6.71	83	

Shaded areas have been translated from their designed inch or mm dimension to an equivalent mm or inch dimension.

■ Lead Screw Compatibility: WDG Series

Diar	Diameter		Le	Lead		Left Hand		Diameter erence)	Root Diameter (for reference)		Efficiency %*	
inches	mm		inches	mm	LEAD CODE	Available	inches	mm	inches	mm		
			0.050	1.27	0050		0.437	11.10	0.362	9.19	30	
			0.0625	1.59	0063	•	0.436	11.07	0.358	9.09	38	
			0.079	2.00	0079		0.472	11.99	0.374	9.50	42	
			0.111	2.82	0111		0.437	11.10	0.327	8.31	52	
			0.118	3.00	0118		0.438	11.13	0.363	9.22	52	
			0.125	3.18	0125		0.438	11.13	0.357	9.07	54	
			0.197	5.00	0197		0.438	11.13	0.315	8.00	65	
7/16	11	043	0.236	6.00	0236		0.433	11.00	0.313	7.95	70	
			0.250	6.35	0250		0.442	11.23	0.325	8.26	70	
			0.307	7.80	0307		0.445	11.30	0.343	8.71	73	
			0.325	8.26	0325		0.444	11.28	0.342	8.69	74	
			0.394	10.00	0394		0.446	11.33	0.331	8.41	78	
			0.472	12.00	0472		0.438	11.13	0.318	8.08	80	
			0.500	12.70	0500		0.452	11.48	0.327	8.31	80	
			0.615	15.62	0615		0.475	12.07	0.376	9.55	82	
			0.050	1.27	0050		0.495	12.57	0.433	11.00	29	
		0.079	2.00	0079		0.473	12.01	0.355	9.02	41		
			0.098	2.50	0098		0.500	12.70	0.383	9.73	46	
			0.100	2.54	0100	•	0.490	12.45	0.364	9.25	46	
			0.125	3.18	0125		0.500	12.70	0.374	9.50	51	
			0.157	4.00	0157		0.500	12.70	0.384	9.75	58	
			0.160	4.06	0160		0.500	12.70	0.388	9.86	67	
			0.1667	4.23	0167		0.500	12.70	0.384	9.75	58	
			0.197	5.00	0197		0.500	12.70	0.365	9.27	62	
			0.200	5.08	0200	•	0.492	12.50	0.366	9.30	63	
1/2	10	OEO	0.250	6.35	0250		0.500	12.70	0.382	9.70	67	
1/2	13	050	0.333	8.46	0333	•	0.497	12.62	0.362	9.19	73	
			0.394	10.00	0394		0.497	12.62	0.362	9.19	76	
			0.400	10.16	0400		0.497	12.62	0.364	9.25	76	
			0.500	12.70	0500		0.488	12.40	0.352	8.94	79	
			0.630	16.00	0630		0.500	12.70	0.374	9.50	80	
			0.750	19.05	0750		0.525	13.34	0.399	10.13	83	
			0.800	20.32	0800		0.500	12.70	0.370	9.40	83	
			0.984	25.00	0984		0.500	12.70	0.369	9.37	84	
			1.000	25.40	1000	•	0.490	12.45	0.372	9.45	84	
			1.500	38.10	1500		0.490	12.45	0.374	9.50	85	
			2.000	50.80	2000		0.488	12.40	0.378	9.60	87	

^{*} Listed efficiencies are theoretical values based on Kerkote® TFE coated lead screw

** Listed efficiencies for Micro screws are theoretical values based on non-coated lead screws

^{*} Listed efficiencies are theoretical values based on Kerkote® TFE coated lead screw

** Listed efficiencies for Micro screws are theoretical values based on non-coated lead screws

***Back-drive threshold is 50±10%

ZBA Nut Series

Developed specifically for those applications that require very smooth and consistent motion, the patented ZBA Series offers a cost effective anti-backlash assembly for applications requiring precise positional accuracy and repeatability. The ZBA has been developed specifically for those applications that require very smooth and consistent motion such as printing, scanning, and coordinate measurement systems. An added benefit of the ZBA design is the ability to manually adjust the drag torque setting to match the specific requirements of the application. This drag torque can also be set at the factory to meet individual customer specifications. The inherent damping qualities of the ZBA design make it ideally suited for applications requiring noise or vibration control. The standard ZBA unit utilizes a self-lubricating polyacetal nut radially preloaded on a 303 stainless steel screw. End machining to customer specifications and Kerkote® TFE screw coating are optional.

Highlights

- Adjustable Drag Torque
- Cost Effective
- Smooth and Consistent Motion

Grease Compatibility

Coatings	Compatible
Kerkote TFE Coating	YES
Black Ice TFE Coating	YES
Grease	YES

Dimensional Tolerances

Inc	hes	Metric (mm)
.X	± .02	< L 4	± 0.1
.XX	± .010	4 < L ≤ 16	± 0.15
.XXX	± .005	16 < L ≤ 63	± 0.2
		63 < L ≤ 250	± 0.3

Anti-Backlash Life

Without Kerkote® TFE Coating inch / (cm)	With Kerkote® TFE Coating inch / (cm)
5 to 10 million	15 to 40 million
(12 to 25 million)	(38 to 100 million)

Anti-backlash life is defined as the nut's ability to compensate for wear while maintaining its zero backlash properties. Above life data is based on 25% of the dynamic load rating. Life will vary with loading, operating environment, and duty cycle. The longer screw leads generally provide longer life.

■ Technical Data

Material	Polyacetal, Lubricant Additive				
Tensile Strength	9,700 psi				
Coefficient of Expansion	6.0 x 10 –5 in/in/°F				
Coefficent of Friction Polyacetal Nut to Screw	Static = .08 .08 ** Dynamic = .15 .09 **				
Standard Operating Temperature Range	32 - 200° F* (0 - 93° C)*				

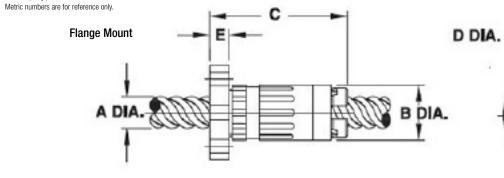
^{*}Very high or low temperatures may cause significant changes in the nut fit or drag torque. Please call the HKP Engineering Team at 603 213 6290 for optional temperature range materials.

** with Kerkote® TFE Coating.

■ Identifying the ZBA Micro Series Nut Part Number Codes when Ordering

ZBA	Α	K	R	062	0100	_ XXXX
Prefix	Nut Mounting Style	Lubrication	Thread Direction	Diameter Code	Nominal Thread Lead Code	Unique Identifier
ZBA	 A = Flanged (Triangular) T = Threaded Micro Series X = Custom 	S = Uncoated K = Kerkote® TFE Coating G = Grease N = Nut only B = Black Ice® TFE Coating	R = Right hand L = Left hand (Refer to lead screw charts for availability	025 = .250 in (6 mm) 031 = .313 in (8 mm) 037 = .375 in (10 mm) 043 = .438 in (11 mm) 050 = .500 in (13 mm) 062 = .625 in (16 mm) 075 = .750 in (19 mm) 087 = .875 in (22 mm) 093 = .938 in (24 mm)	(Refer to LEAD CODE Specifications charts, pages 3 to 6)	Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (–) as shown above. For assistance call our Engineering Team at 603 213 6290.


Dimensional Drawings

ZBA Flange Mount

	Screw Diam. A inch (mm)	Nut Diam. B inch (mm)	Nut Length C inch (mm)	Flange Diam. D inch (mm)	Flange Thickness E inch (mm)	Mounting Hole Diam. F inch (mm)	Bolt Circle Diam. G inch (mm)	Dynamic Load lbs (Kg)	Drag Torque oz-in (N-m)
	1/4 (6)	.50 (12.7)	1.0 (26)	1.0 (25.4)	.18 (4.6)	.140 (3.6)	.750 (19.1)	5 (2.3)	.25 - 3 (.002021)
	5/16 (8)	.70 (17.8)	1.9 (48)	1.5 (38.1)	.18 (4.6)	.200 (5.08)	1.125 (28.6)	10 (5)	1 - 5 (.00703)
ZBAA Flange	3/8 (10)	.70 (17.8)	1.9 (48)	1.5 (38.1)	.18 (4.6)	.200 (5.08)	1.125 (28.6)	10 (5)	1 - 5 (.00703)
Mount	7/16 (11)	.80 (20.3)	1.9 (48)	1.5 (38.1)	.18 (4.6)	.200 (5.08)	1.125 (28.6)	15 (7)	2 - 6 (.01404)
	1/2 (13)	.89 (22.6)	2.0 (51)	1.62 (41.2)	.26 (6.6)	.200 (5.08)	1.125 (28.6)	25 (11)	3 - 7 (.0205)
	5/8 (16)	1.06 (26.9)	2.0 (51)	1.75 (44.5)	.26 (6.6)	.200 (5.08)	1.375 (34.9)	35 (16)	4 - 8 (.028055)
	3/4 (19)	1.70 (43.2)	2.88 (73.2)	2.63 (66.8)	0.38 (9.6)	0.218 (5.5)	2.25 (57.2)	55 (25)	5-9 (.03064)
	7/8 (22)	1.70 (43.2)	2.88 (73.2)	2.63 (66.8)	0.38 (9.6)	0.218 (5.5)	2.25 (57.2)	55 (25)	5-9 (.03064)
	15/16 (24)	1.70 (43.2)	2.88 (73.2)	2.63 (66.8)	0.38 (9.6)	0.218 (5.5)	2.25 (57.2)	55 (25)	5-9 (.03064)

¹metric available as required

2*other spring pre-loads available

F DIA. 3-HOLES ON G DIA. B.C.

ZBX Thread Mount

	Screw Diam. A inch (mm)	Nut Diam. B inch (mm)	Nut Length C inch (mm)	Flange Diam. D inch (mm)	Flange Thickness E inch (mm)	Thread M * inch (mm)	Thread Length N inch (mm)	Dynamic Load** Ibs (Kg)	Drag Torque** oz-in (N-m)
ZBXT	1/4 (6)	.50 (12.7)	1.3 (33)	.80 (20.3)	.22 (5.6)	5/8 - 18	.16 (4.1)	5 (2.3)	.25 - 3 (.002021)
Thread Mount	5/16 (8)	.70 (17.8)	2.2 (56)	1.00 (25.4)	.17 (4.3)	5/8 - 18	.38 (9.7)	10 (5)	1 - 5 (.00703)
WOUTE	3/8 (10)	.70 (17.8)	2.2 (56)	1.00 (25.4)	.17 (4.3)	5/8 - 18	.38 (9.7)	10 (5)	1 - 5 (.00703)
	7/16 (11)	.80 (20.3)	2.3 (59)	1.00 (25.4)	.12 (3.1)	15/16 - 16	.38 (9.7)	15 (7)	2 - 6 (.01404)
	1/2 (13)	.89 (22.6)	2.3 (59)	1.02 (25.9)	.12 (3.1)	15/16 - 16	.38 (9.7)	25 (11)	3 - 7 (.0205)
	5/8 (16)	1.06 (26.9)	2.4 (61)	1.06 (26.9)	.15 (3.8)	15/16 - 16	.50 (12.7)	35 (16)	4 - 8 (.028055)

1metric available as required 2*other spring pre-loads available

Metric numbers are for reference only

www.haydonkerkpittman.com

www.haydonkerkpittman.com

ZBA Nut Series • Adjustable Drag Anti-Backlash

■ Lead Screw Compatibility: ZBA Series

Dian	neter	Diameter Code	Le Le	ad	LEAD CODE	Left Hand Available	Outside (for ref	Diameter erence)		iameter erence)	Efficiency %*
inches	mm		inches	mm		7110110010	inches	mm	inches	mm	
			0.024	0.61	0024		0.250	6.35	0.218	5.54	28
			0.025	0.64	0025		0.250	6.35	0.214	5.44	30
			0.03125	0.79	0031		0.250	6.35	0.208	5.28	34
			0.039	1.00	0039		0.250	6.35	0.190	4.83	40
			0.048	1.22	0048		0.250	6.35	0.190	4.83	45
			0.050	1.27	0050	•	0.250	6.35	0.191	4.85	46
			0.059	1.50	0059		0.250	6.35	0.172	4.37	52
			0.0625	1.59	0063		0.250	6.35	0.170	4.32	52
			0.079	2.00	0079		0.250	6.35	0.170	4.32	59
			0.096	2.44	0096		0.250	6.35	0.190	4.83	61
			0.100	2.54	0100		0.250	6.35	0.190	4.83	62
1/4	6	025	0.118	3.00	0118		0.250	6.35	0.175	4.45	68
			0.125	3.18	0125		0.250	6.35	0.190	4.83	67
			0.197	5.00	0197		0.250	6.35	0.172	4.37	72
			0.200	5.08	0200		0.250	6.35	0.170	4.32	65
			0.250	6.35	0250	•	0.250	6.35	0.168	4.27	79
			0.3125	7.94	0313		0.250	6.35	0.184	4.67	81
			0.333	8.46	0333		0.250	6.35	0.170	4.32	82
			0.394	10.00	0394		0.250	6.35	0.170	4.32	78
			0.400	10.16	0400		0.250	6.35	0.170	4.32	84
			0.500	12.70	0500	•	0.250	6.35	0.169	4.29	85
			0.750	19.05	0750		0.250	6.35	0.170	4.32	86
			1.000	25.40	1000	•	0.250	6.35	0.170	4.32	84
			0.039	1.00	0039		0.315	8.00	0.261	6.63	34
			0.057	1.44	0057		0.315	8.00	0.243	6.17	43
			0.0741	1.88	0074		0.312	7.92	0.211	5.36	51
5/16	8	031	0.111	2.82	0111		0.312	7.92	0.232	5.89	60
J/ 10	J	001	0.167	4.24	0167		0.312	7.92	0.211	5.36	69
			0.250	6.35	0250		0.312	7.92	0.234	5.94	76
			0.500	12.70	0500		0.312	7.92	0.232	5.89	83
			0.800	20.32	0800		0.306	7.77	0.243	6.17	86

Shaded areas have been translated from their designed inch or mm dimension to an equivalent mm or inch dimension.

ZBA Nut Series • Adjustable Drag Anti-Backlash

■ Lead Screw Compatibility: ZBA Series

Dian	neter	Diameter	1.0	ead			Outside	Diameter	Root D	iameter	
Dian	IICICI	Code	LC	au	LEAD CODE	Left Hand Available	(for ref	erence)	(for ref	erence)	Efficiency %*
inches	mm		inches	mm		Availabio	inches	mm	inches	mm	
			0.025	0.64	0025		0.375	9.53	0.337	8.56	21
			0.039	1.00	0039		0.394	10.01	0.350	8.89	28
			0.04167	1.06	0042		0.375	9.53	0.320	8.13	34
			0.050	1.27	0050	•	0.375	9.53	0.301	7.65	36
			0.055	1.40	0055		0.375	9.53	0.303	7.70	38
			0.059	1.50	0059	•	0.389	9.88	0.313	7.95	38
			0.0625	1.59	0063	•	0.388	9.86	0.295	7.49	41
			0.068	1.73	0068		0.388	9.86	0.295	7.49	42
			0.079	2.00	0079		0.375	9.53	0.264	6.71	47
			0.0833	2.12	0083		0.375	9.53	0.293	7.44	48
			0.100	2.54	0100	•	0.375	9.53	0.266	6.76	53
			0.125	3.18	0125	•	0.375	9.53	0.295	7.49	59
			0.157	4.00	0157		0.375	9.53	0.274	6.96	65
			0.1667	4.23	0167		0.371	9.42	0.261	6.63	61
			0.197	5.00	0197		0.375	9.53	0.266	6.76	69
3/8	10	037	0.200	5.08	0200	•	0.375	9.53	0.266	6.76	69
3/0	10	037	0.250	6.35	0250		0.375	9.53	0.268	6.81	70
			0.300	7.62	0300		0.375	9.53	0.255	6.48	76
			0.333	8.46	0333		0.375	9.53	0.245	6.22	78
			0.363	9.22	0363	•	0.375	9.53	0.260	6.60	79
			0.375	9.53	0375		0.375	9.53	0.265	6.73	79
			0.394	10.00	0394		0.375	9.53	0.260	6.60	79
			0.400	10.16	0400		0.375	9.53	0.293	7.44	79
			0.472	12.00	0472		0.388	9.86	0.287	7.29	82
			0.500	12.70	0500	•	0.388	9.86	0.265	6.73	81
			0.667	16.94	0667		0.375	9.53	0.273	6.93	83
			0.667	19.05	0750		0.388	9.86	0.273	6.93	84
			0.984	25.00	0984		0.375	9.53	0.262	6.65	84
			1.000	25.40	1000		0.383	9.73	0.254	6.45	84
			1.200	30.48	1200	•	0.383	9.73	0.254	6.45	84
			1.250	31.75	1250		0.375	9.53	0.278	7.06	84
			1.500	38.10	1500		0.375	9.53	0.264	6.71	83
			0.050	1.27	0050		0.437	11.10	0.362	9.19	30
			0.0625	1.59	0063	•	0.436	11.07	0.358	9.09	38
			0.079	2.00	0079		0.472	11.99	0.374	9.50	42
			0.111	2.82	0111		0.437	11.10	0.327	8.31	52
			0.118	3.00	0118		0.438	11.13	0.363	9.22	52
			0.125	3.18	0125		0.438	11.13	0.357	9.07	54
			0.197	5.00	0197		0.438	11.13	0.315	8.00	65
7/16	11	043	0.236	6.00	0236		0.433	11.00	0.313	7.95	70
			0.250	6.35	0250		0.442	11.23	0.325	8.26	70
			0.307	7.80	0307		0.445	11.30	0.343	8.71	73
			0.325	8.26	0325		0.444	11.28	0.342	8.69	74
			0.394	10.00	0394		0.446	11.33	0.331	8.41	78
			0.472	12.00	0472		0.438	11.13	0.318	8.08	80
			0.500	12.70	0500		0.452	11.48	0.327	8.31	80
			0.615	15.62	0615		0.475	12.07	0.376	9.55	82

www.haydonkerkpittman.com

^{*}Listed efficiencies are theoretical values based on Kerkote® TFE coated lead screw

** Listed efficiencies for Micro screws are theoretical values based on non-coated lead screws

***Back-drive threshold is 50±10%

✓ ZBA Nut Series • Adjustable Drag Anti-Backlash

■ Lead Screw Compatibility: ZBA Series

Dian	neter	Diameter Code	Le	ad	LEAD CODE	Left Hand Available	Outside (for ref	Diameter erence)		iameter erence)	Efficiency %*
inches	mm		inches	mm		Availabio	inches	mm	inches	mm	
			0.050	1.27	0050		0.495	12.57	0.433	11.00	29
			0.079	2.00	0079		0.473	12.01	0.355	9.02	41
			0.098	2.50	0098		0.500	12.70	0.383	9.73	46
			0.100	2.54	0100	•	0.490	12.45	0.364	9.25	46
			0.125	3.18	0125		0.500	12.70	0.374	9.50	51
			0.157	4.00	0157		0.500	12.70	0.384	9.75	58
			0.160	4.06	0160		0.500	12.70	0.388	9.86	67
			0.1667	4.23	0167		0.500	12.70	0.384	9.75	58
			0.197	5.00	0197		0.500	12.70	0.365	9.27	62
			0.200	5.08	0200	•	0.492	12.50	0.366	9.30	63
1/2	13	050	0.250	6.35	0250		0.500	12.70	0.382	9.70	67
1/2	10	030	0.333	8.46	0333	•	0.497	12.62	0.362	9.19	73
			0.394	10.00	0394		0.497	12.62	0.362	9.19	76
			0.400	10.16	0400		0.497	12.62	0.364	9.25	76
			0.500	12.70	0500		0.488	12.40	0.352	8.94	79
			0.630	16.00	0630		0.500	12.70	0.374	9.50	80
			0.750	19.05	0750		0.525	13.34	0.399	10.13	83
			0.800	20.32	0800		0.500	12.70	0.370	9.40	83
			0.984	25.00	0984		0.500	12.70	0.369	9.37	84
			1.000	25.40	1000	•	0.490	12.45	0.372	9.45	84
			1.500	38.10	1500		0.490	12.45	0.374	9.50	85
			2.000	50.80	2000		0.488	12.40	0.378	9.60	87
			0.100	2.54	0100		0.615	15.62	0.498	12.65	40
			0.125	3.18	0125	•	0.625	15.88	0.470	11.94	45
			0.200	5.08	0200		0.625	15.88	0.495	12.57	53
			0.250	6.35	0250		0.625	15.88	0.469	11.91	63
			0.315	8.00	0315		0.627	15.93	0.493	12.52	68
5/8	16	062	0.410	10.41	0410	•	0.625	15.88	0.481	12.22	72
3/0	10	002	0.500	12.70	0500	•	0.625	15.88	0.478	12.14	76
			0.630	16.00	0630		0.625	15.88	0.491	12.47	78
			1.000	25.40	1000		0.625	15.88	0.481	12.22	83
			1.500	38.10	1500		0.625	15.88	0.499	12.67	85
			1.575	40.00	1575	•	0.625	15.88	0.499	12.67	86
			2.000	50.80	2000	•	0.625	15.88	0.499	12.67	86

Shaded areas have been translated from their designed inch or mm dimension to an equivalent mm or inch dimension.

ZBA Nut Series ● Adjustable Drag Anti-Backlash

■ Lead Screw Compatibility: ZBA Series

Diameter		Diameter Code	Le	Lead LEAD CODE		DE Left Hand Available		Diameter erence)	Root Diameter (for reference)		Efficiency %*
inches	mm		inches	mm		71101100010	inches	mm	inches	mm	
			0.0625	1.59	0063		0.750	19.05	0.671	17.04	25
		_	0.098	2.50	0098		0.742	18.85	0.626	15.90	35
			0.100	2.54	0100	•	0.746	18.95	0.624	15.85	35
			0.1667	4.23	0167		0.727	18.47	0.645	16.38	47
			0.197	5.00	0197		0.745	18.92	0.624	15.85	51
			0.200	5.08	0200		0.741	18.82	0.632	16.05	52
			0.250	6.35	0250		0.731	18.57	0.639	16.23	57
			0.276	7.00	0276		0.750	19.05	0.624	15.85	59
			0.333	8.46	0333		0.750	19.05	0.624	15.85	64
			0.394	10.00	0394		0.745	18.92	0.619	15.72	67
			0.500	12.70	0500		0.744	18.90	0.624	15.85	73
0/4	10	075	0.551	14.00	0551		0.750	19.05	0.624	15.85	73
3/4	19	075	0.591	15.00	0591		0.749	19.02	0.623	15.82	74
			0.709	18.00	0709		0.780	19.81	0.650	16.51	77
			0.748	19.00	0748		0.672	17.07	0.547	13.89	80
			0.787	20.00	0787		0.780	19.81	0.648	16.46	78
			0.800	20.32	0800		0.750	19.05	0.618	15.70	79
			0.945	24.00	0945		0.734	18.64	0.633	16.08	80
			1.000	25.40	1000	•	0.743	18.87	0.619	15.72	81
			1.500	38.10	1500	•	0.712	18.08	0.590	14.99	84
			1.969	50.00	1969		0.751	19.08	0.620	15.75	84
			2.000	50.80	2000	•	0.742	18.85	0.611	15.52	84
			2.400	60.96	2400	•	0.750	19.05	0.620	15.75	84
			3.622	92.00	3622	•	0.750	19.05	0.634	16.10	87
			0.200	5.08	0200	•	0.870	22.10	0.742	18.85	48
			0.236	6.00	0236		0.848	21.54	0.773	19.63	52
			0.250	6.35	0250		0.875	22.23	0.749	19.02	53
			0.394	10.00	0394		0.875	22.23	0.741	18.82	65
7/8	00	007	0.500	12.70	0500		0.862	21.89	0.744	18.90	69
1/0	22	087	0.630	16.00	0630		0.875	22.23	0.741	18.82	73
			0.667	16.94	0667		0.871	22.12	0.745	18.92	74
			0.787	20.00	0787		0.875	22.23	0.741	18.82	78
			0.945	24.00	0945		0.875	22.23	0.741	18.82	79
			1.000	25.40	1000		0.871	22.12	0.742	18.85	80
			0.050	1.27	0050	LH Only	0.938	23.83	0.874	22.20	17
15/16	24	093	2.000	50.80	2000		0.927	23.55	0.815	20.70	85
			3.000	76.20	3000	•	0.939	23.85	0.803	20.40	86

^{*} Listed efficiencies are theoretical values based on Kerkote® TFE coated lead screw

^{***}Back-drive threshold is 50±10%

^{*} Listed efficiencies are theoretical values based on Kerkote® TFE coated lead screw

** Listed efficiencies for Micro screws are theoretical values based on non-coated lead screws

^{***}Back-drive threshold is 50±10%

An economical anti-backlash nut assembly that provides precise positional accuracy and repeatability. The patented ZBX Series anti-backlash assembly offers an effective linear actuator for design operations requiring precise positional accuracy and repeatability, with minimum cost. The standard ZBX unit utilizes a patented self-lubricating polyacetal nut radially preloaded on a 303 stainless steel screw. The ZBX assembly, through its unique transfer of loads, offers exceptional torque consistency and repeatability when traversing in either direction. The inherent damping qualities of the ZBX design make it ideally suited for vertical applications requiring noise or vibration control. End machining to customer specifications and Kerkote® TFE screw coating are optional, as are designs for special operating configurations or environments.

ZBM Micro Nut Series

Made from self-lubricating acetal and Kerkite® High Performance Composite Polymers. This remarkable product line is an enabling technology, opening up a whole new range of designs. Developed in response to growing demands in many markets. Haydon Kerk Motion Solutions has offered micro screws on a custom basis for more than 10 years. Now, available as a standard product, customers can get quicker, cost effective deliveries. The Micro Series ZBM anti-backlash and Micro Series lead screws are available as standalone components or integrated into the high performance Haydon linear actuators. The Micro Series allows the miniaturization of products, reduced power consumption, and weight reduction without sacrificing performance or reliability.

Highlights

- Economical anti-backlash nut assembly
- Light Loads
- Ultra-Smooth Motion
- Precise positional accuracy and repeatability

ZBX Grease Compatibility

Coatings	Compatible
Kerkote® TFE Coating	YES
Black Ice® TFE Coating	YES
Grease	YES

ZBX Anti-Backlash Life

Without Kerkote® TFE Coating inch / (cm)	With Kerkote® TFE Coating inch / (cm)
40 to 60 million	150 to 200 million
(100 to 150 million)	(380 to 500 million)

Anti-backlash life is defined as the nut's ability to compensate for wear while maintaining its zero backlash properties. Above life data is based on 25% of the dynamic load rating. Life will vary with loading, operating environment, and duty cycle. The longer screw leads generally provide longer life

ZBX Technical Data

Material	Polyacetal with Lubricant Additive
Tensile Strength	9,700 psi
Coefficient of Expansion	6.0 x 10 –5 in/in/°F
Coefficent of Friction Polyacetal Nut to Screw	Static = .08 .08 ** Dynamic = .15 .09 **
Standard Operating Temperature Range	32 - 200° F* (0 - 93° C)*

*Very high or low temperatures may cause significant changes in the nut fit or drag torque. Please call the HKP Engineering Team at 603 213 6290 for optional temperature range materials

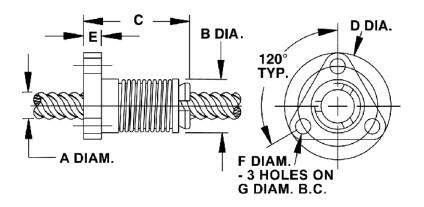
Identifying the ZBX and ZBM Micro Series Nut Part Number Codes when Ordering

ZBX	T	S	R	025	_	0050	_	XXXX
Prefix	Nut Mounting Style	Lubrication	Thread Direction	Diameter Code		Nominal Thread Lead Code		Unique Identifier
ZBX ZBM = Micro Series	 A = Flanged (Triangular) T = Threaded Micro Series R = Rectangular X = Custom 	S = Uncoated K = Kerkote® TFE Coating G = Grease N = Nut only B = Black Ice® TFE Coating	R = Right hand L = Left hand (Refer to lead screw charts for availability	008* = .078 in (2 mm) 025 = .250 in (6 mm) 031 = .313 in (8 mm) 037 = .375 in (10 mm) 043 = .438 in (11 mm) 050 = .500 in (13 mm) 062 = .625 in (16 mm) *Micro Series only		(Refer to LEAD CODE Specifications charts, pages 4 to 6)		Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 603 213 6290.

ZBX Nut Series - Ultra Smooth Motion / ZBM Micro Nut Series • World's Smallest Anti-Backlash

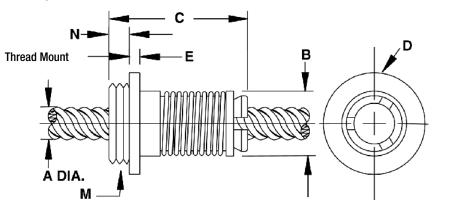
Dimensional Drawings


ZBX Flange Mount

	Screw Diam. A inch (mm)	Nut Diam. B inch (mm)	Nut Length C inch (mm)	Flange Diam. D inch (mm)	Flange Thickness E inch (mm)	Mounting Hole Diam. F inch (mm)	Bolt Circle Diam. G inch (mm)	Dynamic Load** Ibs (Kg)	Drag Torque** oz-in (N-m)
ZBXA	1/4 (6)	.50 (12.7)	1.0 (26)	1.0 (25.4)	.18 (4.6)	.140 (3.6)	.750 (19.1)	5 (2.3)	.25 - 3 (.002021)
Flange	5/16 (8)	.70 (17.8)	1.9 (48)	1.5 (38.1)	.18 (4.6)	.200 (5.08)	1.125 (28.6)	10 (5)	1 - 5 (.00703)
Mount	3/8 (10)	.70 (17.8)	1.9 (48)	1.5 (38.1)	.18 (4.6)	.200 (5.08)	1.125 (28.6)	10 (5)	1 - 5 (.00703)
	7/16 (11)	.80 (20.3)	1.9 (48)	1.5 (38.1)	.18 (4.6)	.200 (5.08)	1.125 (28.6)	15 (7)	2 - 6 (.01404)
	1/2 (13)	.89 (22.6)	2.0 (51)	1.62 (41.2)	.26 (6.6)	.200 (5.08)	1.125 (28.6)	25 (11)	3 - 7 (.0205)
	5/8 (16)	1.06 (26.9)	2.0 (51)	1.75 (44.5)	.26 (6.6)	.200 (5.08)	1.375 (34.9)	35 (16)	4 - 8 (.028055)

1metric available as required 2*other spring pre-loads available

Metric numbers are for reference only.



ZBX Thread Mount

	Screw Diam. A inch (mm)	Nut Diam. B inch (mm)	Nut Length C inch (mm)	Flange Diam. D inch (mm)	Flange Thickness E inch (mm)	Thread M * inch (mm)	Thread Length N inch (mm)	Dynamic Load** lbs (Kg)	Drag Torque** oz-in (N-m)
ZBXT	1/4 (6)	.50 (12.7)	1.3 (33)	.80 (20.3)	.22 (5.6)	5/8 - 18	.16 (4.1)	5 (2.3)	.25 - 3 (.002021)
Thread Mount	5/16 (8)	.70 (17.8)	2.2 (56)	1.00 (25.4)	.17 (4.3)	5/8 - 18	.38 (9.7)	10 (5)	1 - 5 (.00703)
WOUTE	3/8 (10)	.70 (17.8)	2.2 (56)	1.00 (25.4)	.17 (4.3)	5/8 - 18	.38 (9.7)	10 (5)	1 - 5 (.00703)
	7/16 (11)	.80 (20.3)	2.3 (59)	1.00 (25.4)	.12 (3.1)	15/16 - 16	.38 (9.7)	15 (7)	2 - 6 (.01404)
	1/2 (13)	.89 (22.6)	2.3 (59)	1.02 (25.9)	.12 (3.1)	15/16 - 16	.38 (9.7)	25 (11)	3 - 7 (.0205)
	5/8 (16)	1.06 (26.9)	2.4 (61)	1.06 (26.9)	.15 (3.8)	15/16 - 16	.50 (12.7)	35 (16)	4 - 8 (.028055)

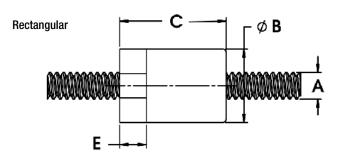
1metric available as required 2*other spring pre-loads available Metric numbers are for reference only.

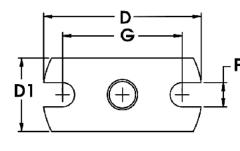
ZDA Difficiational folerances											
hes	Metric (mm)										
± .02	< L 4	± 0.1									
± .010	4 < L ≤ 16	± 0.15									
± .005	16 < L ≤ 63	± 0.2									
	63 < L ≤ 250	± 0.3									
	± .02 ± .010	hes Metric (n $\pm .02$ < L 4 $\pm .010$ 4 < L ≤ 16 $\pm .005$ 16 < L ≤ 63									

Maydon kerk

ZBM Micro Series Rectangular Anti-Backlash Nut Style for Micro Lead screws

ZBMR	ZBMW Nut Style	Screw Diam. A inch (mm)	Nut Diam. B inch (mm)	Nut Length C inch (mm)	Flange Diam. D1 inch (mm)	Flange Diam. D inch (mm)	Flange Thickness E inch (mm)	Thread M * inch (mm)	Thread Length N	Dynamic Load** lbs (Kg)	Drag Torque** oz-in (N-m)
	Rectangular Flange	5/64 (2)	0.22 (5.5)	0.32 (8)	0.22 (5.5)	0.47 (11.9)	0.08 (2.0)	0.07 (1.8)	0.35 (9.0)	1 (.45)	0.5 (.0035) Max.


¹metric available as required


^{2*}other spring pre-loads available Metric numbers are for reference only.

Micro Lead Screw Size List	Dian	neter	Diam. Lead Code		LEAD CODE	Outside Diameter (for Reference)		Root Diameter (for Reference)		Effi- ciency		
	(inches)	(mm)		(inches)	(mm)		(inches)	(mm)	(inches)	(mm)	%**	
				0.020	0.50	0020	0.077	1.96	0.057	1.45	36**	
OILO LIOT	5/64	2	800	0.039	1.00	0039	0.079	2.01	0.059	1.50	52**	
				0.079	2.00	0079	0.077	1.96	0.057	1.45	66**	

Shaded areas have been translated from their designed inch or mm dimension to an equivalent mm or inch dimension.

^{**} Listed efficiencies for Micro screws are theoretical values based on non-coated lead

46 **Haydon kerk** **

www.haydonkerkpittman.com

ZBX Nut Series - Ultra Smooth Motion / ZBM Micro Nut Series • World's Smallest Anti-Backlash

■ Lead Screw Compatibility: ZBX Series

Diar	neter	Diameter	Lo	ad			Outside	Diameter	Root D	iameter	
Diai	IICICI	Code	LC	au	LEAD CODE	Left Hand Available	(for ref	erence)	(for ref	erence)	Efficiency %*
inches	mm		inches	mm		Availabio	inches	mm	inches	mm	
			0.020	0.50	0020		0.077	1.96	0.057	1.45	36**
5/64	2	008	0.039	1.00	0039		0.079	2.01	0.059	1.50	52**
			0.079	2.00	0079		0.077	1.96	0.057	1.45	66**
			0.024	0.61	0024		0.250	6.35	0.218	5.54	28
			0.025	0.64	0025		0.250	6.35	0.214	5.44	30
			0.03125	0.79	0031		0.250	6.35	0.208	5.28	34
			0.039	1.00	0039		0.250	6.35	0.190	4.83	40
			0.048	1.22	0048		0.250	6.35	0.190	4.83	45
			0.050	1.27	0050	•	0.250	6.35	0.191	4.85	46
			0.059	1.50	0059		0.250	6.35	0.172	4.37	52
			0.0625	1.59	0063		0.250	6.35	0.170	4.32	52
			0.079	2.00	0079		0.250	6.35	0.170	4.32	59
			0.096	2.44	0096		0.250	6.35	0.190	4.83	61
			0.100	2.54	0100		0.250	6.35	0.190	4.83	62
1/4	6	025	0.118	3.00	0118		0.250	6.35	0.175	4.45	68
			0.125	3.18	0125		0.250	6.35	0.190	4.83	67
			0.197	5.00	0197		0.250	6.35	0.172	4.37	72
			0.200	5.08	0200		0.250	6.35	0.170	4.32	65
			0.250	6.35	0250	•	0.250	6.35	0.168	4.27	79
			0.3125	7.94	0313		0.250	6.35	0.184	4.67	81
			0.333	8.46	0333		0.250	6.35	0.170	4.32	82
			0.394	10.00	0394		0.250	6.35	0.170	4.32	78
			0.400	10.16	0400		0.250	6.35	0.170	4.32	84
			0.500	12.70	0500	•	0.250	6.35	0.169	4.29	85
			0.750	19.05	0750		0.250	6.35	0.170	4.32	86
			1.000	25.40	1000	•	0.250	6.35	0.170	4.32	84
			0.039	1.00	0039		0.315	8.00	0.261	6.63	34
			0.057	1.44	0057		0.315	8.00	0.243	6.17	43
			0.0741	1.88	0074		0.312	7.92	0.211	5.36	51
5/16	8	031	0.111	2.82	0111		0.312	7.92	0.232	5.89	60
3/10	0	USI	0.167	4.24	0167		0.312	7.92	0.211	5.36	69
			0.250	6.35	0250		0.312	7.92	0.234	5.94	76
			0.500	12.70	0500		0.312	7.92	0.232	5.89	83
			0.80	20.32	0800		0.306	7.77	0.243	6.17	86

 $^{^\}star$ Listed efficiencies are theoretical values based on Kerkote® TFE coated lead screw

^{**} Listed efficiencies for Micro screws are theoretical values based on non-coated lead screws
***Back-drive threshold is 50±10%

ZBX Nut Series • Ultra Smooth Motion / ZBM Micro Nut Series - World's Smallest Anti-Backlash

■ Lead Screw Compatibility: ZBX Series

Code Code	21 28 34 36 38 38 41 42 47
0.025	28 34 36 38 38 41 42
0.039 1.00 0039 0.394 10.01 0.350 8.89 0.04167 1.06 0042 0.375 9.53 0.320 8.13 0.050 1.27 0050 • 0.375 9.53 0.301 7.65 0.055 1.40 0055 0.375 9.53 0.303 7.70 0.059 1.50 0059 • 0.389 9.88 0.313 7.95 0.0625 1.59 0063 • 0.388 9.86 0.295 7.49 0.068 1.73 0068 0.388 9.86 0.295 7.49 0.079 2.00 0079 0.375 9.53 0.264 6.71	28 34 36 38 38 41 42
0.04167 1.06 0042 0.375 9.53 0.320 8.13 0.050 1.27 0050 • 0.375 9.53 0.301 7.65 0.055 1.40 0055 0.375 9.53 0.303 7.70 0.059 • 0.389 9.88 0.313 7.95 0.0625 1.59 0063 • 0.388 9.86 0.295 7.49 0.068 1.73 0068 0.388 9.86 0.295 7.49 0.079 2.00 0079 0.375 9.53 0.264 6.71	34 36 38 38 41 42
0.050 1.27 0050 • 0.375 9.53 0.301 7.65 0.055 1.40 0055 0.375 9.53 0.303 7.70 0.059 1.50 0059 • 0.389 9.88 0.313 7.95 0.0625 1.59 0063 • 0.388 9.86 0.295 7.49 0.068 1.73 0068 0.388 9.86 0.295 7.49 0.079 2.00 0079 0.375 9.53 0.264 6.71	36 38 38 41 42
0.055 1.40 0055 0.375 9.53 0.303 7.70 0.059 1.50 0059 • 0.389 9.88 0.313 7.95 0.0625 1.59 0063 • 0.388 9.86 0.295 7.49 0.068 1.73 0068 0.388 9.86 0.295 7.49 0.079 2.00 0079 0.375 9.53 0.264 6.71	38 38 41 42
0.059 1.50 0059 • 0.389 9.88 0.313 7.95 0.0625 1.59 0063 • 0.388 9.86 0.295 7.49 0.068 1.73 0068 0.388 9.86 0.295 7.49 0.079 2.00 0079 0.375 9.53 0.264 6.71	38 41 42
0.0625 1.59 0063 • 0.388 9.86 0.295 7.49 0.068 1.73 0068 0.388 9.86 0.295 7.49 0.079 2.00 0079 0.375 9.53 0.264 6.71	41 42
0.068 1.73 0068 0.388 9.86 0.295 7.49 0.079 2.00 0079 0.375 9.53 0.264 6.71	42
0.079 2.00 0079 0.375 9.53 0.264 6.71	
	4/
0.0833 2.12 0083 0.375 9.53 0.293 7.44	
	48
0.100 2.54 0100 • 0.375 9.53 0.266 6.76	53
0.125 3.18 0125 • 0.375 9.53 0.295 7.49	59
0.157 4.00 0157 0.375 9.53 0.274 6.96	65
0.1667 4.23 0167 0.371 9.42 0.261 6.63	61
0.197 5.00 0197 0.375 9.53 0.266 6.76	69
3/8 10 037 0.200 5.08 0200 • 0.375 9.53 0.266 6.76	69
0.250 6.35 0250 0.375 9.53 0.268 6.81	70
0.300 7.62 0300 0.375 9.53 0.255 6.48	76
0.333 8.46 0333 0.375 9.53 0.245 6.22	78
0.363 9.22 0363 • 0.375 9.53 0.260 6.60	79
0.375 9.53 0375 0.375 9.53 0.265 6.73	79
0.394 10.00 0394 0.375 9.53 0.260 6.60	79
0.400 10.16 0400 0.375 9.53 0.293 7.44	79
0.472 12.00 0472 0.388 9.86 0.287 7.29	82
0.500 12.70 0500 • 0.388 9.86 0.265 6.73	81
0.667 16.94 0667 0.375 9.53 0.273 6.93	83
0.667 19.05 0750 0.388 9.86 0.273 6.93	84
0.984 25.00 0984 0.375 9.53 0.262 6.65	84
1.000 25.40 1000 0.383 9.73 0.254 6.45	84
1.200 30.48 1200 • 0.383 9.73 0.254 6.45	84
1.250 31.75 1250 0.375 9.53 0.278 7.06	84
1.500 38.10 1500 0.375 9.53 0.264 6.71	83
0.050 1.27 0050 0.437 11.10 0.362 9.19	30
0.0625 1.59 0063 • 0.436 11.07 0.358 9.09	38
0.079 2.00 0079 0.472 11.99 0.374 9.50	42
0.111 2.82 0111 0.437 11.10 0.327 8.31	52
0.118 3.00 0118 0.438 11.13 0.363 9.22	52
0.125 3.18 0125 0.438 11.13 0.357 9.07	54
0.197 5.00 0197 0.438 11.13 0.315 8.00	65
7/16 11 043 0.236 6.00 0236 0.433 11.00 0.313 7.95	70
0.250 6.35 0250 0.442 11.23 0.325 8.26	70
0.307 7.80 0307 0.445 11.30 0.343 8.71	73
Contact Details 0.325 8.26 0325 0.444 11.28 0.342 8.69	74
0.394 10.00 0394 0.446 11.33 0.331 8.41	78
0.472 12.00 0472 0.438 11.13 0.318 8.08	80
0.500 12.70 0500 0.452 11.48 0.327 8.31	80
0.615 15.62 0615 0.475 12.07 0.376 9.55	82

Shaded areas have been translated from their designed inch or mm dimension to an equivalent mm or inch dimension.

ZBX Nut Series - Ultra Smooth Motion / ZBM Micro Nut Series • World's Smallest Anti-Backlash

■ Lead Screw Compatibility: ZBX Series

Diameter		Diameter Code	Lead		LEAD CODE	Left Hand Available	Outside Diameter (for reference)		Root Diameter (for reference)		Efficiency %*	
inches	mm		inches	mm		Available	inches	mm	inches	mm		
			0.050	1.27	0050		0.495	12.57	0.433	11.00	29	
			0.079	2.00	0079		0.473	12.01	0.355	9.02	41	
			0.098	2.50	0098		0.500	12.70	0.383	9.73	46	
			0.100	2.54	0100	•	0.490	12.45	0.364	9.25	46	
			0.125	3.18	0125		0.500	12.70	0.374	9.50	51	
			0.157	4.00	0157		0.500	12.70	0.384	9.75	58	
			0.160	4.06	0160		0.500	12.70	0.388	9.86	67	
			0.1667	4.23	0167		0.500	12.70	0.384	9.75	58	
			0.197	5.00	0197		0.500	12.70	0.365	9.27	62	
			0.200	5.08	0200	•	0.492	12.50	0.366	9.30	63	
1/0	10	050	0.250	6.35	0250		0.500	12.70	0.382	9.70	67	
1/2	13	050	0.333	8.46	0333	•	0.497	12.62	0.362	9.19	73	
			0.394	10.00	0394		0.497	12.62	0.362	9.19	76	
			0.400	10.16	0400		0.497	12.62	0.364	9.25	76	
			0.500	12.70	0500		0.488	12.40	0.352	8.94	79	
			0.630	16.00	0630		0.500	12.70	0.374	9.50	80	
			0.750	19.05	0750		0.525	13.34	0.399	10.13	83	
			0.800	20.32	0800		0.500	12.70	0.370	9.40	83	
			0.984	25.00	0984		0.500	12.70	0.369	9.37	84	
			1.000	25.40	1000	•	0.490	12.45	0.372	9.45	84	
			1.500	38.10	1500		0.490	12.45	0.374	9.50	85	
			2.000	50.80	2000		0.488	12.40	0.378	9.60	87	
			0.100	2.54	0100		0.615	15.62	0.498	12.65	40	
			0.125	3.18	0125	•	0.625	15.88	0.470	11.94	45	
			0.200	5.08	0200		0.625	15.88	0.495	12.57	53	
			0.250	6.35	0250		0.625	15.88	0.469	11.91	63	
			0.315	8.00	0315		0.627	15.93	0.493	12.52	68	
5/8	16	062	0.410	10.41	0410	•	0.625	15.88	0.481	12.22	72	
3/0	10	UUZ	0.500	12.70	0500	•	0.625	15.88	0.478	12.14	76	
			0.630	16.00	0630		0.625	15.88	0.491	12.47	78	
			1.000	25.40	1000		0.625	15.88	0.481	12.22	83	
			1.500	38.10	1500		0.625	15.88	0.499	12.67	85	
			1.575	40.00	1575	•	0.625	15.88	0.499	12.67	86	
			2.000	50.80	2000	•	0.625	15.88	0.499	12.67	86	

^{*} Listed efficiencies are theoretical values based on Kerkote® TFE coated lead screw

^{**} Listed efficiencies for Micro screws are theoretical values based on non-coated lead screws ***Back-drive threshold is 50±10%

^{*}Listed efficiencies are theoretical values based on Kerkote® TFE coated lead screw

** Listed efficiencies for Micro screws are theoretical values based on non-coated lead screws

***Back-drive threshold is 50±10%

Free Wheeling and Specialty Nuts

Haydon Kerk offers conventional style free-wheeling nuts – without anti-backlash features – in our standard self-lubricating polyacetal material, as well as a wide range of proprietary engineered thermoplastics to suit a wealth of applications. Catalog configurations provide several mounting options for quick and affordable implementation, and our extensive inhouse molding capabilities allow for highly custom and tightly integrated conformations for our OEM customers.

3DP Nut Series

Advanced technology for custom motion control prototype development. The 3DP nut offering is designed for rapid prototyping with additive manufacturing. One of the challenges with the current material offerings in 3D printing is the lack of low wear, low friction materials. For prototyping a lead screw driven assembly, it's critical to simulate the correct tribological performance of the lead nut solution to understand how the axis of motion will perform. By integrating basic anti-rotation, and axial locking features with our high efficiency thread form the 3DP nut allows for simple integration of a premium performance thread system into a 3D printed prototype. This gives engineers and developers a leg up on the competition by being able to quickly test several configurations while leveraging additive manufacturing and top performing lead nut materials. The result is shortened design cycle and rapid product launch to market allowing you to capture more market share with your latest and greatest solution.

Grease Compatibility

Coatings	Compatible
Kerkote® TFE Coating	YES
Black Ice® TFE Coating	YES
Grease	YES

Technical Data

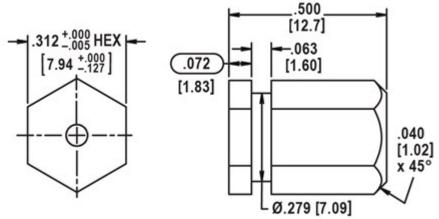
Material	Polyacetal with Lubricant Additive	Kerkite® KN30 High Performance Engineered Polymer
Tensile Strength	9,700 psi	25,000 psi
Coefficient of	6.0 x 10 –5	1.1 x 10 –5
Expansion	in/in/°F	in/in/°F
Coefficent of Friction Polyacetal Nut to Screw		atic = .08 .08 ** vnamic = .15 .09 **
Standard Operating Temperature Range		32 - 200° F* (0 - 93° C)*

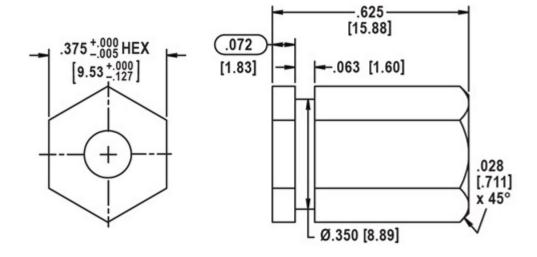
^{*}Very high or low temperatures may cause significant changes in the nut fit or drag torque. Please call the HKP Engineering Team at 603 213 6290 for optional temperature range materials.

** with Kerkote® TFE Coating.

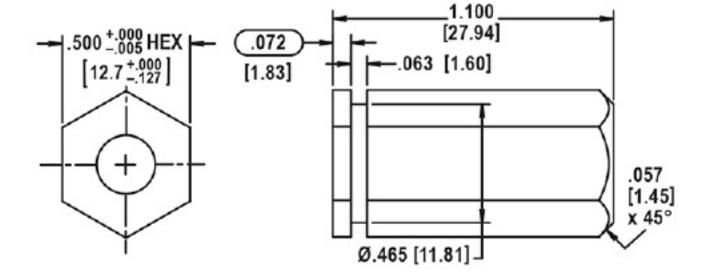
Identifying the 3DP Series Nut Part Number Codes when Ordering

3DP	Н	K	R	_	012	_	0012	_	BZ00
Prefix	Nut Mounting Style	Lubrication	Thread Direction		Diameter Code		Nominal Thread Lead Code		Unique Identifier
3DP	$\mathbf{H} = Hex$	S = Uncoated K = Kerkote® TFE Coating G = Grease N = Nut only B = Black Ice® TFE Coating	R = Right hand L = Left hand (Refer to lead screw charts for availability		012 = .125 in (3.2 mm) 013 = .133 in (3.3 mm) 014 = .141 in (3.6 mm) 016 = .156 in (4 mm) 018 = .188 in (5 mm) 021 = .219 in (5.6 mm) 025 = .250 in (6 mm) 037 = .375 in (10 mm)		(Refer to LEAD CODE Specifications charts, pages 3 to 4)		BZ00 = Acetal base with lubrication matrix KZ00 = Kerkite® KN30 high performance polymer BYXX = Standard acetal base hex nut and cut to length lead screw (XX = length in inches)
									KYXX = Kerkite® KN30 base hex nut and cut to length lead screw (XX = length in inches)


NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 603 213 6290.



■ Dimensional Drawings inch [mm]


3DP Hex Nut: 012 to 021 Series

3DP Hex Nut: 025 Series

3DP Hex Nut: 037 Series

■ Lead Screw Compatibility: 3DP Series

Dian	neter	Diameter	1.0	ad			Outside l	Diameter	Root Diameter (for reference)		
Dian	IIGIGI	Code	Lo	au	LEAD CODE	Left Hand Available	(for ref	erence)	(for ref	erence)	Efficiency %*
inches	mm		inches	mm		rtranasio	inches	mm	inches	mm	
			0.024	0.61	0024		0.129	3.28	0.093	2.36	44
			0.039	1.00	0039		0.129	3.28	0.094	2.39	57
1/8	3.2	012	0.048	1.22	0048		0.129	3.28	0.093	2.36	61
1/0	3.2	012	0.075	1.91	0075		0.129	3.28	0.093	2.36	70
			0.096	2.44	0096	•	0.129	3.28	0.093	2.36	75
			0.125	3.18	0125	LH Only	0.125	3.18	0.078	1.98	80
			0.020	0.50	0020		0.132	3.35	0.104	2.64	42
			0.039	1.00	0039		0.132	3.35	0.080	2.03	61
.132	3.3	013	0.079	2.00	0079		0.132	3.35	0.080	2.03	75
			0.157	4.00	0157		0.132	3.35	0.080	2.03	84
			0.315	8.00	0315		0.132	3.35	0.080	2.03	87
			0.012	0.30	0012		0.140	3.56	0.123	3.12	26
			0.024	0.61	0024		0.140	3.56	0.105	2.67	43
9/64	3.6	014	0.048	1.22	0048		0.140	3.56	0.081	2.06	62
			0.096	2.44	0096		0.140	3.56	0.081	2.06	75
			0.394	10.00	0394		0.140	3.56	0.102	2.59	86
			0.033	0.84	0033	•	0.156	3.96	0.116	2.95	45
			0.050	1.27	0050	LH Only	0.156	3.96	0.096	2.44	59
			0.094	2.39	0094		0.164	4.17	0.128	3.25	67
5/32	4	016	0.125	3.18	0125		0.168	4.27	0.130	3.30	74
			0.250	6.35	0250		0.156	3.96	0.130	3.30	83
			0.375	9.53	0375		0.156	3.96	0.130	3.30	85
			0.500	12.70	0500		0.156	3.96	0.130	3.30	86
			0.020	0.50	0020		0.188	4.78	0.163	4.14	30
			0.025	0.64	0025		0.188	4.78	0.150	3.81	39
			0.039	1.00	0039		0.188	4.78	0.144	3.66	47
			0.050	1.27	0050		0.188	4.78	0.124	3.15	58
	_		0.100	2.54	0100		0.188	4.78	0.136	3.45	69
3/16	5	018	0.1875	4.76	0188		0.188	4.78	0.167	4.24	78
			0.200	5.08	0200		0.188	4.78	0.124	3.15	82
			0.375	9.53	0375		0.188	4.78	0.161	4.09	84
			0.400	10.16	0400		0.188	4.78	0.124	3.15	84
			0.427	10.85	0427		0.188	4.78	0.162	4.11	85
			0.500	12.70	0500	•	0.188	4.78	0.142	3.61	86
			0.024	0.61	0024		0.218	5.54	0.181	4.60	31
			0.03125	0.79	0031		0.204	5.18	0.160	4.06	39
			0.048	1.22	0048		0.216	5.49	0.156	3.96	50
	_		0.050	1.27	0050		0.200	5.08	0.135	3.43	52
7/32	5.6	021	0.0625	1.59	0063		0.218	5.54	0.142	3.61	60
			0.096	2.44	0096		0.218	5.54	0.156	3.96	66
			0.192	4.88	0192		0.218	5.54	0.156	3.96	78
			0.250	6.35	0250	•	0.204	5.18	0.140	3.56	81
			0.384	9.75	0384		0.218	5.54	0.159	4.04	86

^{*} Listed efficiencies are theoretical values based on Kerkote® TFE coated lead screw
** Listed efficiencies for Micro screws are theoretical values based on non-coated lead screws

✓ 3DP Nuts Series • Rapid Prototyping Nut Insert

■ Lead Screw Compatibility: 3DP Series

		Diameter					Outside	Diameter	Root D	iameter	
Diar	neter	Code	Le	ead	LEAD CODE	Left Hand		erence)		erence)	Efficiency %*
inches	mm		inohoo	mm	LLAD GODE	Available					Lilloidiloy /0
inches	mm		inches	mm	0004		inches	mm	inches	mm	00
			0.024	0.61	0024		0.250 0.250	6.35 6.35	0.218 0.214	5.54 5.44	28
			0.025	0.79	0023		0.250	6.35	0.214	5.28	34
			0.039	1.00	0039		0.250	6.35	0.190	4.83	40
			0.048	1.22	0048		0.250	6.35	0.190	4.83	45
			0.050	1.27	0050	•	0.250	6.35	0.191	4.85	46
			0.059	1.50	0059		0.250	6.35	0.172	4.37	52
			0.0625	1.59	0063		0.250	6.35	0.170	4.32	52
			0.079	2.00	0079		0.250	6.35	0.170	4.32	59
			0.096	2.44	0096		0.250	6.35	0.190	4.83	61
4/4		005	0.100	2.54	0100		0.250	6.35	0.190	4.83	62
1/4	6	025	0.118	3.00	0118		0.250	6.35	0.175	4.45	68
			0.125	3.18	0125		0.250	6.35	0.190	4.83	67
			0.197	5.00	0197		0.250 0.250	6.35 6.35	0.172 0.170	4.37 4.32	72 65
			0.250	6.35	0250	•	0.250	6.35	0.170	4.32	79
			0.3125	7.94	0313		0.250	6.35	0.184	4.67	81
			0.333	8.46	0333		0.250	6.35	0.170	4.32	82
			0.394	10.00	0394		0.250	6.35	0.170	4.32	78
			0.400	10.16	0400		0.250	6.35	0.170	4.32	84
			0.500	12.70	0500	•	0.250	6.35	0.169	4.29	85
			0.750	19.05	0750		0.250	6.35	0.170	4.32	86
			1.000	25.40	1000	•	0.250	6.35	0.170	4.32	84
			0.025	0.64	0025		0.375	9.53	0.337	8.56	21
			0.039	1.00	0039		0.394	10.01	0.350	8.89	28
			0.04167	1.06	0042	_	0.375	9.53	0.320	8.13	34
			0.050	1.27	0050 0055	•	0.375 0.375	9.53 9.53	0.301	7.65 7.70	36 38
			0.059	1.50	0059	•	0.389	9.88	0.313	7.76	38
			0.0625	1.59	0063	•	0.388	9.86	0.295	7.49	41
			0.068	1.73	0068		0.388	9.86	0.295	7.49	42
			0.079	2.00	0079		0.375	9.53	0.264	6.71	47
			0.0833	2.12	0083		0.375	9.53	0.293	7.44	48
			0.100	2.54	0100	•	0.375	9.53	0.266	6.76	53
			0.125	3.18	0125	•	0.375	9.53	0.295	7.49	59
			0.157	4.00	0157		0.375	9.53	0.274	6.96	65
			0.1667	4.23	0167		0.371	9.42	0.261	6.63	61
			0.197	5.00	0197	_	0.375	9.53	0.266	6.76	69
3/8	10	037	0.200 0.250	5.08 6.35	0200 0250	•	0.375 0.375	9.53 9.53	0.266	6.76 6.81	69 70
			0.300	7.62	0300		0.375	9.53	0.255	6.48	76
			0.333	8.46	0333		0.375	9.53	0.245	6.22	78
			0.363	9.22	0363	•	0.375	9.53	0.260	6.60	79
			0.375	9.53	0375		0.375	9.53	0.265	6.73	79
			0.394	10.00	0394		0.375	9.53	0.260	6.60	79
			0.400	10.16	0400		0.375	9.53	0.293	7.44	79
			0.472	12.00	0472		0.388	9.86	0.287	7.29	82
			0.500	12.70	0500	•	0.388	9.86	0.265	6.73	81
			0.667	16.94	0667		0.375	9.53	0.273	6.93	83
			0.667	19.05	0750		0.388	9.86	0.273	6.93	84
			0.984 1.000	25.00 25.40	1000		0.375 0.383	9.53 9.73	0.262 0.254	6.65 6.45	84 84
			1.200	30.48	1200	•	0.383	9.73	0.254	6.45	84
			1.250	31.75	1250		0.375	9.53	0.278	7.06	84
			1.500	38.10	1500		0.375	9.53	0.264	6.71	83
		1									

Shaded areas have been translated from their designed inch or mm dimension to an equivalent mm or inch dimension.

BFW Nut Series

Conventional style, without "anti-backlash" function. The BFW Series general purpose "free-wheeling" nut is for applications not requiring anti-backlash and wear compensation. It provides effective power transmission at minimum cost, and features long life, self-lubricating polyacetal nuts.

The secure mounting and convenience of a circular flange is standard on the BFW nuts with triangular flange and thread mounting as an option. Many custom configurations are available.

Screws are 303 stainless steel with extended life, custom Kerkote® TFE coating optional. Assemblies can be supplied cut-to-length or with ends machined to customer requirements and Kerkote® TFE screw coating are optional.

BFW Micro Nut Series

The BFW Micro Series enables a whole new range of micro-sized designs. It allows the miniaturization without sacrificing performance or reliability.

Backlash

N/A, Typical Backlash .003 to .010 (.076 to .25)

Grease Compatibility

Coatings	Compatible
Kerkote® TFE Coating	YES
Black Ice® TFE Coating	YES
Grease	NO

■ Technical Data

Material	Polyacetal, Lubricant Additive
Tensile Strength	9,700 psi
Coefficient of Expansion	6.0 x 10 –5 in/in/°F
Coefficent of Friction Polyacetal Nut to Screw	Static = .08
Standard Operating Temperature Range	32 - 200° F* (0 - 93° C)*

^{*} Very high or low temperatures may cause significant changes in the nut fit or drag torque. Please call the HKP Engineering Team at 603 213 6290 for optional temperature range materials.

** with Kerkote® TFE Coating.

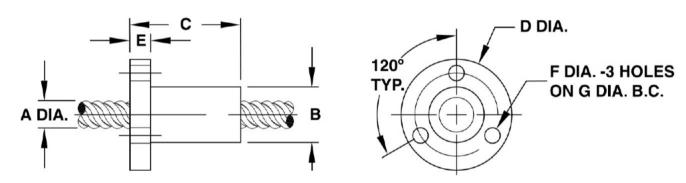
Identifying the BFW Series Nut Part Number Codes when Ordering

BFW	Α	K	R	018	0020	XXXX
Prefix	Nut Mounting Style	Lubrication	Thread Direction	Diameter Code	Nominal Thread Lead Code	Unique Identifier
BFW	A = Flanged (Triangular) F = Flanged (Round) T = Threaded X = Custom For Mini and Micro Series Only: B = Barrel m μ R = Rectangular m μ The BFW Mini Series The BFW Micro Series	S = Uncoated K = Kerkote® TFE Coating G = Grease N = Nut only B = Black Ice® TFE Coating	R = Right hand L = Left hand (Not Available for Micro Series) (Refer to lead screw charts for availability	008 " = .078 in (2 mm) 012" = .125 in (3.2 mm) 013" = .133 in (3.3 mm) 014" = .141 in (3.6 mm) 016" = .156 in (4 mm) 018" = .188 in (5 mm) 021" = .219 in (5.6 mm) 035 = .250 in (6 mm) 037 = .375 in (10 mm) 043 = .438 in (11 mm) 050 = .500 in (13 mm) 062 = .625 in (16 mm) 075 = .750 in (19 mm) 087 = .875 in (22 mm) 093 = .938 in (24 mm) "BFW Mini Series "BFW Mini Series	(Refer to LEAD CODE Specifications charts, pages 5 to 9)	Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (–) as shown above. For assistance call our Engineering Team at 603 213 6290.

^{*} Listed efficiencies are theoretical values based on Kerkote® TFE coated lead screw
** Listed efficiencies for Micro screws are theoretical values based on non-coated lead screws

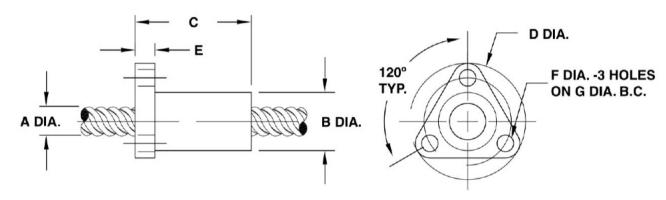
^{***}Back-drive threshold is $50\pm10\%$


BFW Nut Series • General Purpose Backlash

Dimensional Drawings

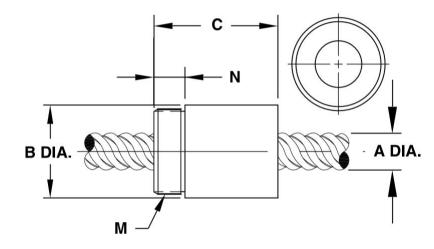
BFW Round Flange Mount

	Screw Diam.	Nut Diam.	Nut Length	Flange Diam.	Flange Thickness	Mounting Hole Diam.	Bolt Circle Diam.	Dynamic
	Α	В	C	D	E	F	G	Load
	inch (mm)	inch (mm)	inch (mm)	inch (mm)	inch (mm)	inch (mm)	inch (mm)	lbs (Kg)
	1/4 (6)	.50 (12.7)	1.0 (25.4)	100 (25.4)	.19 (4.8)	.140 (3.56)	.750 (19.05)	50 (20)
	5/16 (8)	.63 (15.9)	1.0 (25.4)	1.13 (28.7)	.19 (4.8)	.140 (3.56)	.875 (22.23)	75 (35)
BFWF	3/8 (10)	.63 (15.9)	1.0 (25.4)	1.13 (28.7)	.19 (4.8)	.140 (3.56)	.875 (22.23)	75 (35)
Flange Mount	7/16 (11)	.75 (19.1)	1.5 (38)	1.50 38.1)	.19 (4.8)	.203 (5.16)	1.125 (28.58)	90 (40)
	1/2 (13)	.75 (19.1)	1.5 (38)	1.50 38.1)	.19 (4.8)	.203 (5.16)	1.125 (28.58)	150 (68)
	5/8 (16)	.88 (22.2)	1.5 (38)	1.50 38.1)	.19 (4.8)	.203 (5.16)	1.188 (30.18)	225 (100)
	3/4 (19)	1.12 (28.4)	2.0 (51)	1.75 (44.4)	.25 (6.4)	.203 (5.16)	1.438 (36.53)	350 (160)
	7/8 (22)	1.50 (38.1)	2.0 (51)	2.25 (57.1)	.25 (6.4)	.203 (5.16)	1.875 (47.63)	500 (227)
	15/16 (24)	1.50 (38.1)	2.0 (51)	2.25 (57.1)	.25 (6.4)	.203 (5.16)	1.875 (47.63)	500 (227)


Metric numbers are for reference only.

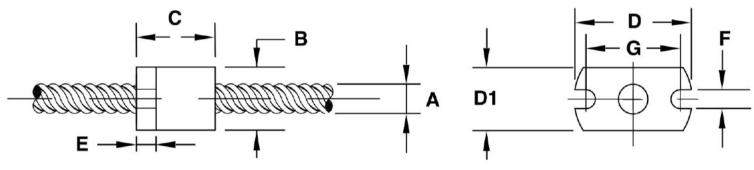
BFW Triangular Flange Mount

	Screw Diam. A	Nut Diam. B	Nut Length C	Flange Diam. D	Flange Thickness E	Mounting Hole Diam. F	Bolt Circle Diam. G	Dynamic Load**
	inch (mm)	inch (mm)	inch (mm)	inch (mm)	inch (mm)	inch (mm)	inch (mm)	lbs (Kg)
BFWA Triangular	1/4 (6)	.50 (12.7)	1.0 (25.4)	1.00 (25.4)	.17 (4.3)	.143 (3.63)	.750 (19.05)	50 (20)
Flange Mount	5/16 (8)	.50 (12.7)	1.9 (48.3)	1.50 (38.1)	.17 (4.3)	.197 (5.00)	1.125 (28.58)	75 (35)
Mount	3/8 (10)	.66 (16.6)	1.9 (48.3)	1.50 (38.1)	.17 (4.3)	.197 (5.00)	1.125 (28.58)	75 (35)
	7/16 (11)	.75 (19.1)	1.9 (48.3)	1.50 (38.1)	.17 (4.3)	.197 (5.00)	1.125 (28.58)	90 (40)
	1/2 (13)	.75 (19.1)	1.9 (48.3)	1.50 (38.1)	.17 (4.3)	.197 (5.00)	1.125 (28.58)	150 (68)


Metric numbers are for reference only.

BFW Thread Mount

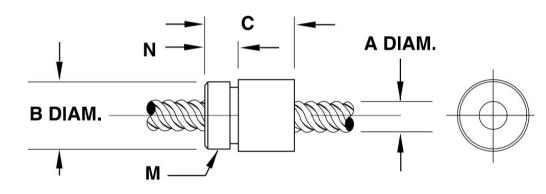
	Screw Diam. A	Nut Diam. B	Nut Length C	Thread M*	Thread Length N	Dynamic Load**
	inch (mm)	inch (mm)	inch (mm)	inch	inch (mm)	lbs (Kg)
	1/4 (6)	.63 (15.9)	1.0 (25.4)	9/16 - 18	.187 (4.75)	50 (20)
	5/16 (8)	.75 (19.1)	1.0 (25.4)	5/8 - 18	.250 (6.35)	75 (35)
BFWT	3/8 (10)	.75 (19.1)	1.0 (25.4)	5/8 - 18	.250 (6.35)	75 (35)
Thread Mount	7/16 (11)	1.00 (25.4)	1.5 (38.1)	15/16 - 16	.375 (9.53)	90 (40)
	1/2 (13)	1.00 (25.4)	1.5 (38.1)	15/16 - 16	.375 (9.53)	150 (68)
	5/8 (16)	1.00 (25.4)	1.5 (38.1)	15/16 - 16	.375 (9.53)	225 (100)
	3/4 (19)	1.50 (38.1)	2.0 (51)	1 3/8 - 16	.500 (12.70)	350 (160)
	7/8 (22)	1.50 (38.1)	2.0 (51)	1 3/8 - 16	.500 (12.70)	500 (227)
	15/16 (24)	1.50 (38.1)	2.0 (51)	1 3/8 - 16	.500 (12.70)	500 (227)


Metric numbers are for reference only.

BFW Mini Rectangular Flange Mount

BFWR Rectangular	Screw Diam. A inch (mm)	Nut Diam. B inch (mm)	Nut Length C inch (mm)	Flange Height D1 inch (mm)	Flange Diam. D inch (mm)	Flange Thickness E inch (mm)	Mounting Hole Diam. F inch (mm)	Bolt Circle Diam. G inch (mm)	Dynamic Load lbs (Kg)	Drag Torque oz-in (N-m)
Flange Mount	1/8 inch through 7/32 inch (3 mm through 5.6 mm)	0.40 (10.2)	0.50 (13)	0.40 (10.2)	0.75 (19.1)	0.13 (3.2)	0.120 (3.05)	0.600 (15.24)	25 (11)	Free Wheeling

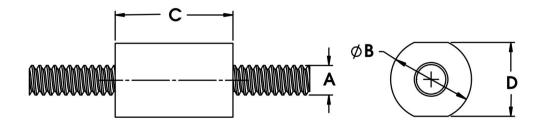
Metric numbers are for reference only.



■ BFW Nut Series • General Purpose Backlash

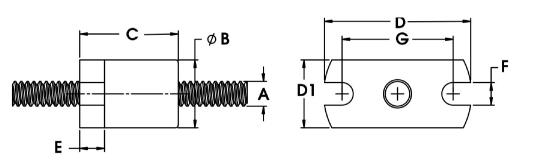
BFW Mini Thread Mount

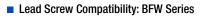
BFWT	Screw Diam. A inch (mm)	Nut Diam. B inch (mm)	Nut Length C inch (mm)	Thread M* inch	Thread Length N inch (mm)	Dynamic Load lbs (Kg)	Drag Torque oz-in (N-m)
Thread Mount	1/8 inch through 7/32 inch (3 mm through 5.6 mm)	0.40 (10.2)	0.50 (13)	3/8-24	0.187 (4.75)	25 (11)	Free Wheeling


Metric numbers are for reference only.

BFW Micro Barrel Mount

BFWB Barrel	Screw Diam. A inch (mm)	Nut Diam. B inch (mm)	Nut Length C inch (mm)	Nut Flats D inch (mm)	Dynamic Load lbs (Kg)	Drag Torque oz-in (N-m)
Mount	E /C / /O\	0.22	0.32	0.20	10	Free
	5/64 (2)	(5.5)	(8)	(5.08)	(4.5)	Wheeling


Metric numbers are for reference only.



BFW Micro Rectangular Flange Mount

BFWR Rectangular Flange	Screw Diam. A inch (mm)	Nut Diam. B inch (mm)	Nut Length C inch (mm)	Flange Height D1 inch (mm)	Flange Diam. D inch (mm)	Flange Thickness E inch (mm)	Mounting Hole Diam. F inch (mm)	Bolt Circle Diam. G inch (mm)	Dynamic Load lbs (Kg)	Drag Torque oz-in (N-m)
Mount	E (C.A. (O)	0.22	0.32	0.22	0.47	0.08	0.07	0.35	10	Free
	5/64 (2)	(5.5)	(8)	(5.5)	(11.9)	(2.0)	(1.8)	(9.0)	(4.5)	Wheeling

Metric numbers are for reference only.

Diameter		Diameter	1.0	ad			Outside	Diameter	Root D	iameter		
Dian	iictei	Code		au	LEAD CODE	Left Hand Available	(for ref	erence)	(for ref	erence)	Efficiency %*	
inches	mm		inches	mm		rttanasio	inches	mm	inches	mm		
			0.012	0.30	0012		0.079	2.01	0.068	1.73	24**	
			0.016	0.40	0016		0.075	1.91	0.058	1.47	30**	
5/64	2	800	0.020	0.50	0020		0.077	1.96	0.057	1.45	36**	
			0.039	1.00	0039		0.079	2.01	0.059	1.50	52**	
			0.079	2.00	0079		0.077	1.96	0.057	1.45	66**	
			0.024	0.61	0024		0.129	3.28	0.093	2.36	44	
			0.039	1.00	0039		0.129	3.28	0.094	2.39	57	
1/0	2.0	010	0.048	1.22	0048		0.129	3.28	0.093	2.36	61	
1/8	3.2	012	0.075	1.91	0075		0.129	3.28	0.093	2.36	70	
			0.096	2.44	0096	•	0.129	3.28	0.093	2.36	75	
			0.125	3.18	0125	LH Only	0.125	3.18	0.078	1.98	80	
			0.020	0.50	0020		0.132	3.35	0.104	2.64	42	
			0.039	1.00	0039		0.132	3.35	0.080	2.03	61	
.132	3.3	013	0.079	2.00	0079		0.132	3.35	0.080	2.03	75	
			0.157	4.00	0157		0.132	3.35	0.080	2.03	84	
			0.315	8.00	0315		0.132	3.35	0.080	2.03	87	
			0.012	0.30	0012		0.140	3.56	0.123	3.12	26	
			0.024	0.61	0024		0.140	3.56	0.105	2.67	43	
9/64	3.6	014	0.048	1.22	0048		0.140	3.56	0.081	2.06	62	
9/64			0.096	2.44	0096		0.140	3.56	0.081	2.06	75	
			0.394	10.00	0394		0.140	3.56	0.102	2.59	86	
			0.033	0.84	0033	•	0.156	3.96	0.116	2.95	45	
			0.050	1.27	0050	LH Only	0.156	3.96	0.096	2.44	59	
			0.094	2.39	0094		0.164	4.17	0.128	3.25	67	
5/32	4	016	0.125	3.18	0125		0.168	4.27	0.130	3.30	74	
			0.250	6.35	0250		0.156	3.96	0.130	3.30	83	
			0.375	9.53	0375		0.156	3.96	0.130	3.30	85	
			0.500	12.70	0500		0.156	3.96	0.130	3.30	86	
			0.020	0.50	0020		0.188	4.78	0.163	4.14	30	
			0.025	0.64	0025		0.188	4.78	0.150	3.81	39	
			0.039	1.00	0039		0.188	4.78	0.144	3.66	47	
			0.050	1.27	0050		0.188	4.78	0.124	3.15	58	
			0.100	2.54	0100		0.188	4.78	0.136	3.45	69	
3/16	5	018	0.1875	4.76	0188		0.188	4.78	0.167	4.24	78	
			0.200	5.08	0200		0.188	4.78	0.124	3.15	82	
			0.375	9.53	0375		0.188	4.78	0.161	4.09	84	
			0.400	10.16	0400		0.188	4.78	0.124	3.15	84	
			0.427	10.85	0427		0.188	4.78	0.162	4.11	85	
			0.500	12.70	0500	•	0.188	4.78	0.142	3.61	86	

^{*} Listed efficiencies are theoretical values based on Kerkote® TFE coated lead screw
** Listed efficiencies for Micro screws are theoretical values based on non-coated lead screws
***Back-drive threshold is 50±10%

BFW Nut Series • General Purpose Backlash

■ Lead Screw Compatibility: BFW Series

Б.		Diameter					Outside l	Diameter	Root D	ameter	
Dian	neter	Code	Le	ad	LEAD CODE	Left Hand Available	(for ref	erence)	(for ref	erence)	Efficiency %*
inches	mm		inches	mm		Available	inches	mm	inches	mm	
			0.024	0.61	0024		0.218	5.54	0.181	4.60	31
			0.03125	0.79	0031		0.204	5.18	0.160	4.06	39
			0.048	1.22	0048		0.216	5.49	0.156	3.96	50
			0.050	1.27	0050		0.200	5.08	0.135	3.43	52
7/32	5.6	021	0.0625	1.59	0063		0.218	5.54	0.142	3.61	60
			0.096	2.44	0096		0.218	5.54	0.156	3.96	66
			0.192	4.88	0192		0.218	5.54	0.156	3.96	78
			0.250	6.35	0250	•	0.204	5.18	0.140	3.56	81
			0.384	9.75	0384		0.218	5.54	0.159	4.04	86
			0.024	0.61	0024		0.250	6.35	0.218	5.54	28
			0.025	0.64	0025		0.250	6.35	0.214	5.44	30
			0.03125	0.79	0031		0.250	6.35	0.208	5.28	34
			0.039	1.00	0039		0.250	6.35	0.190	4.83	40
			0.048	1.22	0048		0.250	6.35	0.190	4.83	45
			0.050	1.27	0050	•	0.250	6.35	0.191	4.85	46
			0.059	1.50	0059		0.250	6.35	0.172	4.37	52
	6	025	0.0625	1.59	0063		0.250	6.35	0.170	4.32	52
			0.079	2.00	0079		0.250	6.35	0.170	4.32	59
			0.096	2.44	0096		0.250	6.35	0.190	4.83	61
			0.100	2.54	0100		0.250	6.35	0.190	4.83	62
1/4			0.118	3.00	0118		0.250	6.35	0.175	4.45	68
			0.125	3.18	0125		0.250	6.35	0.190	4.83	67
			0.197	5.00	0197		0.250	6.35	0.172	4.37	72
			0.200	5.08	0200		0.250	6.35	0.170	4.32	65
			0.250	6.35	0250	•	0.250	6.35	0.168	4.27	79
			0.3125	7.94	0313		0.250	6.35	0.184	4.67	81
			0.333	8.46	0333		0.250	6.35	0.170	4.32	82
			0.394	10.00	0394		0.250	6.35	0.170	4.32	78
			0.400	10.16	0400		0.250	6.35	0.170	4.32	84
			0.500	12.70	0500	•	0.250	6.35	0.169	4.29	85
			0.750	19.05	0750		0.250	6.35	0.170	4.32	86
			1.000	25.40	1000	•	0.250	6.35	0.170	4.32	84
			0.039	1.00	0039		0.315	8.00	0.261	6.63	34
			0.057	1.44	0057		0.315	8.00	0.243	6.17	43
			0.0741	1.88	0074		0.312	7.92	0.211	5.36	51
5/16	8	031	0.111	2.82	0111		0.312	7.92	0.232	5.89	60
3,10	J		0.167	4.24	0167		0.312	7.92	0.211	5.36	69
			0.250	6.35	0250		0.312	7.92	0.234	5.94	76
			0.500	12.70	0500		0.312	7.92	0.232	5.89	83
			0.800	20.32	0800		0.306	7.77	0.243	6.17	86

Shaded areas have been translated from their designed inch or mm dimension to an equivalent mm or inch dimension.

■ Lead Screw Compatibility: BFW Series

Diameter		Diameter	Lead			Outside Diameter		Root Diameter			
Dian	ICICI	Code	LG	au	LEAD CODE	Left Hand Available	(for ref	erence)	(for ref	ference)	Efficiency %*
inches	mm		inches	mm		Available	inches	mm	inches	mm	
			0.025	0.64	0025		0.375	9.53	0.337	8.56	21
			0.039	1.00	0039		0.394	10.01	0.350	8.89	28
			0.04167	1.06	0042		0.375	9.53	0.320	8.13	34
			0.050	1.27	0050	•	0.375	9.53	0.301	7.65	36
			0.055	1.40	0055		0.375	9.53	0.303	7.70	38
			0.059	1.50	0059	•	0.389	9.88	0.313	7.76	38
			0.0625	1.59	0063	•	0.388	9.86	0.295	7.95	41
			0.068	1.73	0068		0.388	9.86	0.295	7.49	42
				2.00	0079		0.375				47
			0.079					9.53	0.264	6.71	
			0.0833	2.12	0083		0.375	9.53	0.293	7.44	48
			0.100	2.54	0100	•	0.375	9.53	0.266	6.76	53
			0.125	3.18	0125	•	0.375	9.53	0.295	7.49	59
			0.157	4.00	0157		0.375	9.53	0.274	6.96	65
			0.1667	4.23	0167		0.371	9.42	0.261	6.63	61
			0.197	5.00	0197		0.375	9.53	0.266	6.76	69
3/8	10	037	0.200	5.08	0200	•	0.375	9.53	0.266	6.76	69
			0.250	6.35	0250		0.375	9.53	0.268	6.81	70
			0.300	7.62	0300		0.375	9.53	0.255	6.48	76
			0.333	8.46	0333		0.375	9.53	0.245	6.22	78
			0.363	9.22	0363	•	0.375	9.53	0.260	6.60	79
			0.375	9.53	0375		0.375	9.53	0.265	6.73	79
			0.394	10.00	0394		0.375	9.53	0.260	6.60	79
			0.400	10.16	0400		0.375	9.53	0.293	7.44	79
			0.472	12.00	0472		0.388	9.86	0.287	7.29	82
			0.500	12.70	0500	•	0.388	9.86	0.265	6.73	81
			0.667	16.94	0667		0.375	9.53	0.273	6.93	83
			0.667	19.05	0750		0.388	9.86	0.273	6.93	84
			0.984	25.00	0984		0.375	9.53	0.262	6.65	84
			1.000	25.40	1000		0.383	9.73	0.254	6.45	84
			1.200	30.48	1200	•	0.383	9.73	0.254	6.45	84
			1.250	31.75	1250		0.375	9.53	0.278	7.06	84
			1.500	38.10	1500		0.375	9.53	0.264	6.71	83
			0.050	1.27	0050		0.437	11.10	0.362	9.19	30
			0.0625	1.59	0063	•	0.436	11.07	0.358	9.09	38
			0.079	2.00	0079		0.472	11.99	0.374	9.50	42
			0.111	2.82	0111		0.437	11.10	0.327	8.31	52
			0.118	3.00	0118		0.438	11.13	0.363	9.22	52
			0.125	3.18	0125		0.438	11.13	0.357	9.07	54
			0.197	5.00	0197		0.438	11.13	0.315	8.00	65
7/16	11	043	0.236	6.00	0236		0.433	11.00	0.313	7.95	70
		0.0	0.250	6.35	0250		0.442	11.23	0.325	8.26	70
			0.307	7.80	0307		0.445	11.30	0.343	8.71	73
			0.325	8.26	0325		0.444	11.28	0.342	8.69	74
			0.323	10.00	0323		0.446	11.33	0.342	8.41	78
			0.472	12.00	0472		0.438	11.13	0.318	8.08	80
			0.500	12.70	0500		0.452	11.48	0.327	8.31	80
			0.615	15.62	0615		0.475	12.07	0.376	9.55	82

www.haydonkerkpittman.com

^{*} Listed efficiencies are theoretical values based on Kerkote® TFE coated lead screw

** Listed efficiencies for Micro screws are theoretical values based on non-coated lead screws

***Back-drive threshold is 50±10%

BFW Nut Series • General Purpose Backlash

■ Lead Screw Compatibility: BFW Series

Diameter		Diameter Code	Le	Lead		Left Hand	Outside ((for ref	Diameter erence)	Root Diameter (for reference)		Efficiency %*
inches	mm		inches	mm	LEAD CODE	Available	inches	mm	inches	mm	
			0.050	1.27	0050		0.495	12.57	0.433	11.00	29
			0.079	2.00	0079		0.473	12.01	0.355	9.02	41
			0.098	2.50	0098		0.500	12.70	0.383	9.73	46
			0.100	2.54	0100	•	0.490	12.45	0.364	9.25	46
			0.125	3.18	0125		0.500	12.70	0.374	9.50	51
			0.157	4.00	0157		0.500	12.70	0.384	9.75	58
			0.160	4.06	0160		0.500	12.70	0.388	9.86	67
			0.1667	4.23	0167		0.500	12.70	0.384	9.75	58
			0.197	5.00	0197		0.500	12.70	0.365	9.27	62
			0.200	5.08	0200	•	0.492	12.50	0.366	9.30	63
1/2	13	050	0.250	6.35	0250		0.500	12.70	0.382	9.70	67
1/2	10	030	0.333	8.46	0333	•	0.497	12.62	0.362	9.19	73
			0.394	10.00	0394		0.497	12.62	0.362	9.19	76
			0.400	10.16	0400		0.497	12.62	0.364	9.25	76
			0.500	12.70	0500		0.488	12.40	0.352	8.94	79
			0.630	16.00	0630		0.500	12.70	0.374	9.50	80
			0.750	19.05	0750		0.525	13.34	0.399	10.13	83
			0.800	20.32	0800		0.500	12.70	0.370	9.40	83
			0.984	25.00	0984		0.500	12.70	0.369	9.37	84
			1.000	25.40	1000	•	0.490	12.45	0.372	9.45	84
			1.500	38.10	1500		0.490	12.45	0.374	9.50	85
			2.000	50.80	2000		0.488	12.40	0.378	9.60	87
			0.100	2.54	0100		0.615	15.62	0.498	12.65	40
			0.125	3.18	0125	•	0.625	15.88	0.470	11.94	45
			0.200	5.08	0200		0.625	15.88	0.495	12.57	53
			0.250	6.35	0250		0.625	15.88	0.469	11.91	63
			0.315	8.00	0315		0.627	15.93	0.493	12.52	68
5/8	16	062	0.410	10.41	0410	•	0.625	15.88	0.481	12.22	72
	.0		0.500	12.70	0500	•	0.625	15.88	0.478	12.14	76
			0.630	16.00	0630		0.625	15.88	0.491	12.47	78
			1.000	25.40	1000		0.625	15.88	0.481	12.22	83
			1.500	38.10	1500		0.625	15.88	0.499	12.67	85
			1.575	40.00	1575	•	0.625	15.88	0.499	12.67	86
			2.000	50.80	2000	•	0.625	15.88	0.499	12.67	86

Shaded areas have been translated from their designed inch or mm dimension to an equivalent mm or inch dimension.

■ Lead Screw Compatibility: BFW Series

Dian	neter	Diameter	1.	ead			Outside Diameter		Root Diameter		
Dian	iictei	Code		au	LEAD CODE	Left Hand Available	(for reference)		(for ref	erence)	Efficiency %*
inches	mm		inches	mm		7110110010	inches	mm	inches	mm	
			0.0625	1.59	0063		0.750	19.05	0.671	17.04	25
			0.098	2.50	0098		0.742	18.85	0.626	15.90	35
			0.100	2.54	0100	•	0.746	18.95	0.624	15.85	35
			0.1667	4.23	0167		0.727	18.47	0.645	16.38	47
			0.197	5.00	0197		0.745	18.92	0.624	15.85	51
			0.200	5.08	0200		0.741	18.82	0.632	16.05	52
			0.250	6.35	0250		0.731	18.57	0.639	16.23	57
			0.276	7.00	0276		0.750	19.05	0.624	15.85	59
			0.333	8.46	0333		0.750	19.05	0.624	15.85	64
			0.394	10.00	0394		0.745	18.92	0.619	15.72	67
			0.500	12.70	0500		0.744	18.90	0.624	15.85	73
0/4	10	075	0.551	14.00	0551		0.750	19.05	0.624	15.85	73
3/4	19	075	0.591	15.00	0591		0.749	19.02	0.623	15.82	74
			0.709	18.00	0709		0.780	19.81	0.650	16.51	77
			0.748	19.00	0748		0.672	17.07	0.547	13.89	80
			0.787	20.00	0787		0.780	19.81	0.648	16.46	78
			0.800	20.32	0800		0.750	19.05	0.618	15.70	79
			0.945	24.00	0945	•	0.734	18.64	0.633	16.08	80
			1.000	25.40	1000	•	0.743	18.87	0.619	15.72	81
			1.500	38.10	1500		0.712	18.08	0.590	14.99	84
			1.969	50.00	1969	•	0.751	19.08	0.620	15.75	84
			2.000	50.80	2000	•	0.742	18.85	0.611	15.52	84
			2.400	60.96	2400	•	0.750	19.05	0.620	15.75	84
			3.622	92.00	3622	•	0.750	19.05	0.634	16.10	87
			0.200	5.08	0200	•	0.870	22.10	0.742	18.85	48
			0.236	6.00	0236		0.848	21.54	0.773	19.63	52
			0.250	6.35	0250		0.875	22.23	0.749	19.02	53
			0.394	10.00	0394		0.875	22.23	0.741	18.82	65
7/8	22	087	0.500	12.70	0500		0.862	21.89	0.744	18.90	69
1/0	22	007	0.630	16.00	0630		0.875	22.23	0.741	18.82	73
			0.667	16.94	0667		0.871	22.12	0.745	18.92	74
			0.787	20.00	0787		0.875	22.23	0.741	18.82	78
			0.945	24.00	0945		0.875	22.23	0.741	18.82	79
			1.000	25.40	1000		0.871	22.12	0.742	18.85	80
			0.050	1.27	0050	LH Only	0.938	23.83	0.874	22.20	17
15/16	24	093	2.000	50.80	2000		0.927	23.55	0.815	20.70	85
			3.000	76.20	3000	•	0.939	23.85	0.803	20.40	86

^{*}Listed efficiencies are theoretical values based on Kerkote® TFE coated lead screw

** Listed efficiencies for Micro screws are theoretical values based on non-coated lead screws

***Back-drive threshold is 50±10%

^{*} Listed efficiencies are theoretical values based on Kerkote® TFE coated lead screw
** Listed efficiencies for Micro screws are theoretical values based on non-coated lead screws
***Back-drive threshold is 50±10%

Lead Screws

Kerk Lead Screws utilize the latest in precision rolling technology. Lead screws are available in standard diameters from 5/64" to 15/16" and includes metric and left hand threads. Most standard lead screws are manufactured from 303 stainless steel and are produced using our exclusive precision rolling process. Other lead screw materials are available for application specific requirements.

✓ Lead Screws by Size • Ø 1/8 to 15/16 in (3.2 to 23 mm)

Kerk® Lead Screws

Manufactured from 303 stainless steel and produced with Kerk's exclusive precision rolling process. Available in standard diameters from 1/8-in (3.2mm) to 15/16-in (23mm), with standard leads from .012-in to almost 4-in (0.30mm to 92mm) including metric and left hand threads. Custom sizes and leads can be special ordered. Positional bi-directional repeatability (with Kerk anti-backlash nut) is within 50 micro-inches (1.25 micron) and standard lead accuracy is better than 0.0006-in./in. (mm/mm). Lead accuracies are available to .0001-in./in. (mm/mm). The surface finish is better than 16 micro-inches (0.4 µm). Please consult factory for more details. Kerk stainless steel lead screws and guide rails are corrosion resistant, non-magnetic, and compatible with many demanding processes.

■ Identifying the Lead Screw Part Number Codes when Ordering

LSS	S	K	R	025	0024	EY10
Prefix	Nut Mounting Style	Lubrication	Thread Direction	Diameter Code	Nominal Thread Lead Code	Unique Identifier
LSS = Screw Only	S = Screw Only X = Custom	S = Uncoated K = Kerkote® TFE Coating G = Grease N = Nut only B = Black Ice® TFE Coating	R = Right hand L = Left hand (Refer to lead screw charts for availability	008 μ = .078-in (2) 012m = .125-in (3.2) 013m = .133-in (3.3) 014m = .141-in (3.6) 016m = .156-in (4) 018m = .188-in (5) 021m = .219-in (5.6) 031 = .313-in (8) 037 = .375-in (10) 043 = .438-in (11) 050 = .500-in (13) 062 = .625-in (16) 075 = .750-in (19) 087 = .875-in (22) 093 = .938-in (24) m BFW Mini Series μBFW Micro Series	(Refer to LEAD CODE Specifications charts, pages 2 to 6)	FY06 = 6" CTL Kerk threadform EY10 = 10" C-T-L Haydon threadform

NOTE: Dashes must be included in Part Number (–) as shown above. For assistance call our Engineering Team at 603 213 6290.

Material & Teflon TFE Coating Options

	Materials		Teflon TFE Coatings
Kerkite® Composite Polymer Nuts	In addition to the Kerk® self-lubricating acetal nut material, we offer a variety of custom compounded Kerkite composite polymers. Kerkite polymers are a family of high performance materials that offer exceptional wear properties with the cost and design advantages afforded through injection molding. Kerkite polymers offer a variety of mechanical, thermal and electrical properties and are compatible with many chemicals and environmental conditions. Each member of the Kerkite family is compounded with lubricants, reinforcements and thermoplastic polymers formulated to provide optimum performance in its target conditions and applications.	Kerkote® TFE Coating	Soft coating that is a long-term, maintenance-free, dry lubricant, optimized for softer plastics like acetals and nylons, with or without mechanical reinforcement. Lubrication to the nut/screw interface occurs by the nut picking up Kerkote® TFE particles from the coating as well as from the migration of the internal lubricant within the plastic nut. The transfer of TFE to the nut continues throughout the operating life of the assembly as long as the nut periodically travels over areas with Kerkote® TFE coating. The lubricant, although solid, also has some "spreading" ability as in fluid lubricants. Kerkote® TFE coated screws provide the maximum level of self-lubrication and should not be additionally lubricated or used in environments where oils or other lubricant contamination is possible.
Special Materials	Kerk® has rolled screws in many materials, including 316 stainless, 400 series stainless, precipitate hardening materials, carbon steel, aluminum, and titanium. Kerk® nuts have been produced in many alternative plastics including PEEK, polyester, Torlon®, Vespel®, PVDF, UHMW, Ertalyte®, customer-supplied specialty materials, and metal nuts made from bronze, brass, and stainless steel. If the material can be molded, machined, ground, or rolled, we can likely process it.	Black Ice® TFE Coating	Hard coating that is long term, maintenance-free and is exceptionally durable in all types of environments, with virtually any type of polymer nut. Black Ice® TFE coating remains on the screw, offering a low friction surface upon which the nut travels. Rather than acting as a dry lubricant, Black Ice® TFE is an anti-friction coating whose surface properties displace the metal to which it is applied. Though it is not intended for use with metal or glass fiber reinforced nuts, Black Ice® TFE is bonded securely to the screw's surface and can withstand abrasion from contamination, rigid polymer systems, fluid impingement and wash down applications. Black Ice® TFE can be used in more aggressive environment conditions, or anywhere reduced friction and a permanent coating is desired. Not intended to be used with additional lubricants.

Note: There are certain applications where external lubrication may be desired. These include the use of nut materials such as glass reinforced plastic or metal. Greases, when used properly can provide unique capabilities and Haydon Kerk Motion Solutions does offer a selection of greases developed specifically for these applications. Please contact a sales engineer for assistance selecting the best lubricant for your requirements.

Haydon kerk

✓ Lead Screws by Size • Ø 1/8 to 15/16 in (3.2 to 23 mm)

Diameter and Lead Codes

Dian	neter	Diameter Code	Lead		LEAD CODE	Left Hand	Outside Diameter (for reference)		Root Diameter (for reference)		Efficiency %*
inahaa		0000	inahaa		LEAD CODE	Available					Efficiency %*
inches	mm		inches	mm			inches	mm	inches	mm	2.111
			0.012	0.30	0012		0.079	2.01	0.068	1.73	24**
5/64			0.016	0.40	0016		0.075	1.91	0.058	1.47	30**
(.078) Micro Series	2	008 ^µ	0.020	0.50	0020		0.077	1.96	0.057	1.45	36**
			0.039	1.00	0039		0.079	2.01	0.059	1.50	52**
			0.079	2.00	0079		0.077	1.96	0.057	1.45	66**
			0.024	0.61	0024		0.129	3.28	0.093	2.36	44
			0.039	1.00	0039		0.129	3.28	0.094	2.39	57
1/8	3.2	012 m	0.048	1.22	0048		0.129	3.28	0.093	2.36	61
(.125)			0.075	1.91	0075		0.129	3.28	0.093	2.36	70
			0.096	2.44	0096	•	0.129	3.28	0.093	2.36	75
			0.125	3.18	0125	LH Only	0.125	3.18	0.078	1.98	80
			0.020	0.50	0020		0.132	3.35	0.104	2.64	42
17/128			0.039	1.00	0039		0.132	3.35	0.080	2.03	61
(.132)	3.3	013 m	0.079	2.00	0079		0.132	3.35	0.080	2.03	75
, ,			0.157	4.00	0157		0.132	3.35	0.080	2.03	84
			0.315	8.00	0315		0.132	3.35	0.080	2.03	87
			0.012	0.30	0012		0.140	3.56	0.123	3.12	26
0/04			0.024	0.61	0024		0.140	3.56	0.105	2.67	43
9/64 (.141)	3.6	014 m	0.048	1.22	0048		0.140	3.56	0.081	2.06	62
(.141)			0.096	2.44	0096		0.140	3.56	0.081	2.06	75
			0.394	10.00	0394		0.140	3.56	0.102	2.59	86
			0.033	0.84	0033	•	0.156	3.96	0.116	2.95	45
			0.050	1.27	0050	LH Only	0.156	3.96	0.096	2.44	59
			0.094	2.39	0094		0.164	4.17	0.128	3.25	67
5/32 (.156)	4	016 m	0.125	3.18	0125		0.168	4.27	0.130	3.30	74
(.150)			0.250	6.35	0250		0.156	3.96	0.130	3.30	83
			0.375	9.53	0375		0.156	3.96	0.130	3.30	85
			0.500	12.70	0500		0.156	3.96	0.130	3.30	86
			0.020	0.50	0020		0.188	4.78	0.163	4.14	30
			0.025	0.64	0025		0.188	4.78	0.150	3.81	39
			0.039	1.00	0039		0.188	4.78	0.144	3.66	47
			0.050	1.27	0050		0.188	4.78	0.124	3.15	58
			0.100	2.54	0100		0.188	4.78	0.136	3.45	69
316	5	018 m	0.1875	4.76	0188		0.188	4.78	0.167	4.24	78
(.188)			0.200	5.08	0200		0.188	4.78	0.124	3.15	82
			0.375	9.53	0375		0.188	4.78	0.161	4.09	84
			0.400	10.16	0400		0.188	4.78	0.124	3.15	84
			0.427	10.85	0427		0.188	4.78	0.162	4.11	85
			0.500	12.70	0500	•	0.188	4.78	0.142	3.61	86
			0.500	12.70	0300	•	0.100	4./0	0.142	3.01	00

Shaded areas have been translated from their designed inch or mm dimension to an equivalent mm or inch dimension.

Diameter and Lead Codes

Dian	neter	Diameter	l e	ad		1 - 6 11	Outside Diameter		Root D		
Dian	10101	Code		·uu	LEAD CODE	Left Hand Available	(for ref	erence)	(for ref	erence)	Efficiency %*
inches	mm		inches	mm			inches	mm	inches	mm	
			0.024	0.61	0024		0.218	5.54	0.181	4.60	31
			0.03125	0.79	0031		0.204	5.18	0.160	4.06	39
			0.048	1.22	0048		0.216	5.49	0.156	3.96	50
=100			0.050	1.27	0050		0.200	5.08	0.135	3.43	52
7/32 (.219)	5.6	021 ^m	0.0625	1.59	0063		0.218	5.54	0.142	3.61	60
(12.10)			0.096	2.44	0096		0.218	5.54	0.156	3.96	66
			0.192	4.88	0192		0.218	5.54	0.156	3.96	78
			0.250	6.35	0250	•	0.204	5.18	0.140	3.56	81
			0.384	9.75	0384		0.218	5.54	0.159	4.04	86
			0.024	0.61	0024		0.250	6.35	0.218	5.54	28
			0.025	0.64	0025		0.250	6.35	0.214	5.44	30
			0.03125	0.79	0031		0.250	6.35	0.208	5.28	34
			0.039	1.00	0039		0.250	6.35	0.190	4.83	40
			0.048	1.22	0048		0.250	6.35	0.190	4.83	45
			0.050	1.27	0050	•	0.250	6.35	0.191	4.85	46
			0.059	1.50	0059		0.250	6.35	0.172	4.37	52
			0.0625	1.59	0063		0.250	6.35	0.170	4.32	52
			0.079	2.00	0079		0.250	6.35	0.170	4.32	59
			0.096	2.44	0096		0.250	6.35	0.190	4.83	61
414			0.100	2.54	0100		0.250	6.35	0.190	4.83	62
1/4 (.250)	6	025	0.118	3.00	0118		0.250	6.35	0.175	4.45	68
()			0.125	3.18	0125		0.250	6.35	0.190	4.83	67
			0.197	5.00	0197		0.250	6.35	0.172	4.37	72
			0.200	5.08	0200		0.250	6.35	0.170	4.32	65
			0.250	6.35	0250	•	0.250	6.35	0.168	4.27	79
			0.3125	7.94	0313		0.250	6.35	0.184	4.67	81
			0.333	8.46	0333		0.250	6.35	0.170	4.32	82
			0.394	10.00	0394		0.250	6.35	0.170	4.32	78
			0.400	10.16	0400		0.250	6.35	0.170	4.32	84
			0.500	12.70	0500	•	0.250	6.35	0.169	4.29	85
			0.750	19.05	0750		0.250	6.35	0.170	4.32	86
			1.000	25.40	1000	•	0.250	6.35	0.170	4.32	84
			0.039	1.00	0039		0.315	8.00	0.261	6.63	34
			0.057	1.44	0057		0.315	8.00	0.243	6.17	43
			0.0741	1.88	0074		0.312	7.92	0.211	5.36	51
5/16	8	031	0.111	2.82	0111		0.312	7.92	0.232	5.89	60
(.313)	U	UJI	0.167	4.24	0167		0.312	7.92	0.211	5.36	69
			0.250	6.35	0250		0.312	7.92	0.234	5.94	76
		0.500	12.70	0500		0.312	7.92	0.232	5.89	83	
			0.800	20.32	0800		0.306	7.77	0.243	6.17	86

^{*} Listed efficiencies are theoretical values based on Kerkote® TFE coated lead screw
*** Listed efficiencies for Micro screws are theoretical values based on non-coated lead screws
***Back-drive threshold is 50±10%

^{*} Listed efficiencies are theoretical values based on Kerkote® TFE coated lead screw
** Listed efficiencies for Micro screws are theoretical values based on non-coated lead screws
***Back-drive threshold is 50±10%

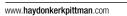
Lead Screws by Size • Ø 1/8 to 15/16 in (3.2 to 23 mm)

Diameter and Lead Codes

Diameter		Diameter Code	Lead		LEAD CODE	Left Hand		Diameter erence)	Root Diameter (for reference)		Efficiency %*
inches	mm		inches	mm		Available	inches	mm	inches	mm	
			0.025	0.64	0025		0.375	9.53	0.337	8.56	21
			0.039	1.00	0039		0.394	10.01	0.350	8.89	28
			0.04167	1.06	0042		0.375	9.53	0.320	8.13	34
			0.050	1.27	0050	•	0.375	9.53	0.301	7.65	36
			0.055	1.40	0055		0.375	9.53	0.303	7.70	38
			0.059	1.50	0059	•	0.389	9.88	0.313	7.95	38
			0.0625	1.59	0063	•	0.388	9.86	0.295	7.49	41
			0.068	1.73	0068		0.388	9.86	0.295	7.49	42
			0.079	2.00	0079		0.375	9.53	0.264	6.71	47
			0.0833	2.12	0083		0.375	9.53	0.293	7.44	48
			0.100	2.54	0100	•	0.375	9.53	0.266	6.76	53
			0.125	3.18	0125	•	0.375	9.53	0.295	7.49	59
			0.157	4.00	0157		0.375	9.53	0.274	6.96	65
			0.1667	4.23	0167		0.371	9.42	0.261	6.63	61
			0.197	5.00	0197		0.375	9.53	0.266	6.76	69
3/8			0.200	5.08	0200	•	0.375	9.53	0.266	6.76	69
(.375)	10	037	0.250	6.35	0250		0.375	9.53	0.268	6.81	70
			0.300	7.62	0300		0.375	9.53	0.255	6.48	76
			0.333	8.46	0333		0.375	9.53	0.245	6.22	78
			0.363	9.22	0363	•	0.375	9.53	0.260	6.60	79
			0.375	9.53	0375		0.375	9.53	0.265	6.73	79
			0.394	10.00	0394		0.375	9.53	0.260	6.60	79
			0.400	10.16	0400		0.375	9.53	0.293	7.44	79
			0.472	12.00	0472		0.388	9.86	0.287	7.29	82
			0.500	12.70	0500	•	0.388	9.86	0.265	6.73	81
			0.667	16.94	0667		0.375	9.53	0.273	6.93	83
			0.667	19.05	0750		0.388	9.86	0.273	6.93	84
			0.984	25.00	0984		0.375	9.53	0.262	6.65	84
			1.000	25.40	1000		0.383	9.73	0.254	6.45	84
			1.200	30.48	1200	•	0.383	9.73	0.254	6.45	84
			1.250	31.75	1250		0.375	9.53	0.278	7.06	84
			1.500	38.10	1500		0.375	9.53	0.264	6.71	83
			0.050	1.27	0050		0.437	11.10	0.362	9.19	30
			0.0625	1.59	0063	•	0.436	11.07	0.358	9.09	38
			0.079	2.00	0079		0.472	11.99	0.374	9.50	42
			0.111	2.82	0111		0.437	11.10	0.327	8.31	52
			0.118	3.00	0118		0.438	11.13	0.363	9.22	52
			0.125	3.18	0125		0.438	11.13	0.357	9.07	54
			0.197	5.00	0197		0.438	11.13	0.315	8.00	65
7/16 (.438)	11	043	0.236	6.00	0236		0.433	11.00	0.313	7.95	70
(. 150)			0.250	6.35	0250		0.442	11.23	0.325	8.26	70
			0.307	7.80	0307		0.445	11.30	0.343	8.71	73
			0.325	8.26	0325		0.444	11.28	0.342	8.69	74
			0.394	10.00	0394		0.446	11.33	0.331	8.41	78
			0.472	12.00	0472		0.438	11.13	0.318	8.08	80
			0.500	12.70	0500		0.452	11.48	0.327	8.31	80
			0.615	15.62	0615		0.475	12.07	0.376	9.55	82

Shaded areas have been translated from their designed inch or mm dimension to an equivalent mm or inch dimension.

Maydon kerk wasten solutions


✓ Lead Screws by Size • Ø 1/8 to 15/16 in (3.2 to 23 mm)

Diameter and Lead Codes

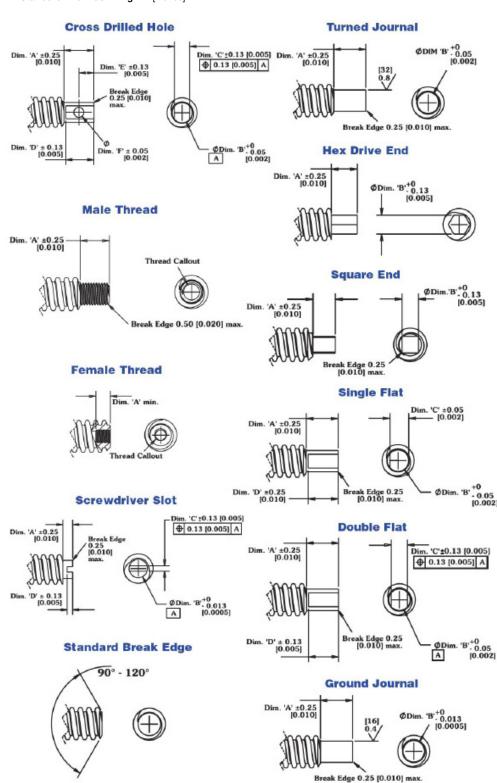
Dian	neter	Diameter Code	Le	ad	LEAD CODE	Left Hand	Outside Diameter (for reference)			iameter erence)	Efficiency %*
inches	mm		inches	mm		Available	inches	mm	inches	mm	
			0.050	1.27	0050		0.495	12.57	0.433	11.00	29
			0.079	2.00	0079		0.473	12.01	0.355	9.02	41
			0.098	2.50	0098		0.500	12.70	0.383	9.73	46
			0.100	2.54	0100	•	0.490	12.45	0.364	9.25	46
			0.125	3.18	0125		0.500	12.70	0.374	9.50	51
			0.157	4.00	0157		0.500	12.70	0.384	9.75	58
			0.160	4.06	0160		0.500	12.70	0.388	9.86	67
			0.1667	4.23	0167		0.500	12.70	0.384	9.75	58
			0.197	5.00	0197		0.500	12.70	0.365	9.27	62
			0.200	5.08	0200	•	0.492	12.50	0.366	9.30	63
1/2	13	050	0.250	6.35	0250		0.500	12.70	0.382	9.70	67
(.500)	13	030	0.333	8.46	0333	•	0.497	12.62	0.362	9.19	73
			0.394	10.00	0394		0.497	12.62	0.362	9.19	76
			0.400	10.16	0400		0.497	12.62	0.364	9.25	76
			0.500	12.70	0500		0.488	12.40	0.352	8.94	79
			0.630	16.00	0630		0.500	12.70	0.374	9.50	80
			0.750	19.05	0750		0.525	13.34	0.399	10.13	83
			0.800	20.32	0800		0.500	12.70	0.370	9.40	83
			0.984	25.00	0984		0.500	12.70	0.369	9.37	84
			1.000	25.40	1000	•	0.490	12.45	0.372	9.45	84
			1.500	38.10	1500		0.490	12.45	0.374	9.50	85
			2.000	50.80	2000		0.488	12.40	0.378	9.60	87
			0.100	2.54	0100		0.615	15.62	0.498	12.65	40
			0.125	3.18	0125	•	0.625	15.88	0.470	11.94	45
			0.200	5.08	0200		0.625	15.88	0.495	12.57	53
			0.250	6.35	0250		0.625	15.88	0.469	11.91	63
			0.315	8.00	0315		0.627	15.93	0.493	12.52	68
5/8	16	062	0.410	10.41	0410	•	0.625	15.88	0.481	12.22	72
(.625)	10	002	0.500	12.70	0500	•	0.625	15.88	0.478	12.14	76
			0.630	16.00	0630		0.625	15.88	0.491	12.47	78
			1.000	25.40	1000		0.625	15.88	0.481	12.22	83
			1.500	38.10	1500		0.625	15.88	0.499	12.67	85
			1.575	40.00	1575	•	0.625	15.88	0.499	12.67	86
			2.000	50.80	2000	•	0.625	15.88	0.499	12.67	86

^{*} Listed efficiencies are theoretical values based on Kerkote® TFE coated lead screw
** Listed efficiencies for Micro screws are theoretical values based on non-coated lead screws
***Back-drive threshold is 50±10%

^{*} Listed efficiencies are theoretical values based on Kerkote® TFE coated lead screw
** Listed efficiencies for Micro screws are theoretical values based on non-coated lead screws
***Back-drive threshold is 50±10%

✓ Lead Screws by Size • Ø 1/8 to 15/16 in (3.2 to 23 mm)

Diameter and Lead Codes


Dian	meter	Diameter Code	Le	ead	LEAD CODE	Left Hand		Diameter erence)		iameter erence)	Efficiency %*
inches	mm		inches	mm		Available	inches	mm	inches	mm	
			0.0625	1.59	0063		0.750	19.05	0.671	17.04	25
			0.098	2.50	0098		0.742	18.85	0.626	15.90	35
			0.100	2.54	0100	•	0.746	18.95	0.624	15.85	35
			0.1667	4.23	0167		0.727	18.47	0.645	16.38	47
			0.197	5.00	0197		0.745	18.92	0.624	15.85	51
			0.200	5.08	0200		0.741	18.82	0.632	16.05	52
			0.250	6.35	0250		0.731	18.57	0.639	16.23	57
			0.276	7.00	0276		0.750	19.05	0.624	15.85	59
			0.333	8.46	0333		0.750	19.05	0.624	15.85	64
			0.394	10.00	0394		0.745	18.92	0.619	15.72	67
			0.500	12.70	0500		0.744	18.90	0.624	15.85	73
3/4	40	075	0.551	14.00	0551		0.750	19.05	0.624	15.85	73
(.750)	19	075	0.591	15.00	0591		0.749	19.02	0.623	15.82	74
			0.709	18.00	0709		0.780	19.81	0.650	16.51	77
			0.748	19.00	0748		0.672	17.07	0.547	13.89	80
			0.787	20.00	0787		0.780	19.81	0.648	16.46	78
			0.800	20.32	0800		0.750	19.05	0.618	15.70	79
			0.945	24.00	0945	•	0.734	18.64	0.633	16.08	80
			1.000	25.40	1000	•	0.743	18.87	0.619	15.72	81
			1.500	38.10	1500		0.712	18.08	0.590	14.99	84
			1.969	50.00	1969	•	0.751	19.08	0.620	15.75	84
			2.000	50.80	2000	•	0.742	18.85	0.611	15.52	84
			2.400	60.96	2400	•	0.750	19.05	0.620	15.75	84
			3.622	92.00	3622	•	0.750	19.05	0.634	16.10	87
			0.200	5.08	0200	•	0.870	22.10	0.742	18.85	48
			0.236	6.00	0236		0.848	21.54	0.773	19.63	52
			0.250	6.35	0250		0.875	22.23	0.749	19.02	53
			0.394	10.00	0394		0.875	22.23	0.741	18.82	65
7/8	00	007	0.500	12.70	0500		0.862	21.89	0.744	18.90	69
(.875)	22	087	0.630	16.00	0630		0.875	22.23	0.741	18.82	73
			0.667	16.94	0667		0.871	22.12	0.745	18.92	74
			0.787	20.00	0787		0.875	22.23	0.741	18.82	78
			0.945	24.00	0945		0.875	22.23	0.741	18.82	79
			1.000	25.40	1000		0.871	22.12	0.742	18.85	80
			0.050	1.27	0050	LH Only	0.938	23.83	0.874	22.20	17
5/16 (.938)	24	093	2.000	50.80	2000		0.927	23.55	0.815	20.70	85
(.a20)			3.000	76.20	3000	•	0.939	23.85	0.803	20.40	86

Shaded areas have been translated from their designed inch or mm dimension to an equivalent mm or inch dimension.

Screw Inertia

Screw Size	Screw Inertia							
inch [mm]	[oz-inch-sec2/inch]	[g-cm2/cm]						
5/64 (2)	3.4 x 10 ⁻⁸	9.5 x 10 ⁻⁴						
1/8 (3.2)	1.8 x 10 ⁻⁷	5.0 x 10 ⁻³						
9/64 (3.5)	3.4 x 10 ⁻⁷	9.5 x 10 ⁻³						
5/32 (3.97)	4.9 x 10 ⁻⁷	1.4 x 10 ⁻²						
3/16 (4.76)	1.1 x 10 ⁻⁶	3.1 x 10 ⁻²						
7/32 (5.55)	1.8 x 10 ⁻⁶	5.0 x 10 ⁻²						
1/4 (6)	3 x 10 ⁻⁵	8.3 x 10 ⁻²						
5/16 (8)	5 x 10 ⁻⁵	1.4						
3/8 (10)	1.5 x 10 ⁻⁵	0.4						
7/16 (11)	3.5 x 10 ⁻⁵	1.0						
1/2 (13)	5.2 x 10 ⁻⁵	1.4						
5/8 (16)	14.2 x 10 ⁻⁵	3.9						
3/4 (19)	30.5 x 10 ^{−5}	8.5						
7/8 (22)	58.0 x 10 ⁻⁵	16.1						
15/16 (24)	73.0 x 10 ^{−5}	20.3						

■ Standard End Machining mm[inches]

^{*} Listed efficiencies are theoretical values based on Kerkote® TFE coated lead screw
** Listed efficiencies for Micro screws are theoretical values based on non-coated lead screws

^{***}Back-drive threshold is 50±10%

AMETEK Haydon Kerk Lead Screw and Nut Customization

Haydon Kerk takes great pride in designing and developing customized solutions for your application needs.

Our Design and Development Engineers begin with our standard catalog products and build ideal solutions for your motion needs. Our factories bring your solutions into production.

Stepper Motor Linear Actuators

Our various patented designs use a proprietary manufacturing process which incorporates engineered thermoplastics in the rotor drive nut and a stainless steel lead screw. This design allows the linear actuator to be much quieter, more efficient and more durable than a v-thread and bronze nut configuration commonly used in other linear actuators.

Stepper Motor Linear Actuaor Terminology

Terminology

Detent or Residual Torque	The torque required to rotate the motor's output shaft with no current applied to the windings.
Drives	A term depicting the external electrical components to run a Stepper Motor System. This will include power supplies, logic sequencers, switching components and usually a variable frequency pulse source to determine the step rate.
Dynamic Torque	The torque generated by the motor at a given step rate. Dynamic torque can be represented by PULL IN torque or PULL OUT torque.
Holding Torque	The torque required to rotate the motor's output shaft while the windings are energized with a steady state D.C. current.
Inertia	The measure of a body's resistance to acceleration or deceleration. Typically used in reference to the inertia of the load to be moved by a motor or the inertia of a motor's rotor.
Linear Step Increment	The linear travel movement generated by the lead screw with each single step of the rotor.
Maximum Temperature Rise	Allowable increase in motor temperature by design. Motor temperature rise is caused by the internal power dissipation of the motor as a function of load. This power dissipation is the sum total from I2R (copper loss), iron (core) loss, and friction. The final motor temperature is the sum of the temperature rise and ambient temperature.
Pulse Rate	The number of pulses per second (pps) applied to the windings of the motor. The pulse rate is equivalent to the motor step rate.
Pulses Per Second (PPS)	The number of steps that the motor takes in one second (sometimes called "steps per second"). This is determined by the frequency of pulses produced by the motor drive.
Ramping	A drive technique to accelerate a given load from a low step rate, to a given maximum step rate and then to decelerate to the initial step rate without the loss of steps.
Single Step Response	The time required for the motor to make one complete step.
Step	The angular rotation produced by the rotor each time the motor receives a pulse. For linear actuators a step translates to a specific linear distance.
Step Angle	The rotation of the rotor caused by each step, measured in degrees.
Steps Per Revolution	The total number of steps required for the rotor to rotate 360°.
Torque	 Pull out torque: The maximum torque the motor can deliver once the motor is running at constant speed. Since there is no change in speed there is no inertial torque. Also, the kinetic energy stored in the rotor and load inertia help to increase the pull out torque. Pull in torque: The torque required to accelerate the rotor inertia and any rigidly attached external load up to speed plus whatever friction torque must be overcome. Pull in torque, therefore, is always less than pull out torque.

Hybrid Linear Actuators

Haydon Kerk Motion Solutions offers a unique line of hybrid stepper motor linear actuators that open new avenues for equipment designers who require high performance and exceptional endurance in a very small package. The various patented and patent pending designs use a proprietary manufacturing process, which incorporates engineering thermoplastics in the rotor drive nut and a stainless steel acme lead screw. This allows the linear actuator to be much quieter, more efficient and more durable than the v-thread and bronze nut configuration commonly used in other linear actuators.

Torque to Inertia Ratio

Holding torque divided by rotor inertia.

www.haydonkerkpittman.com

Size 8 Hybrid Precision Stepper Motor is part of our extensive, award winning miniature motor product line and is one of the world's smallest linear actuators.

More Compact Option for Motion Applications

The 21000 Series Size 8 Linear Actuator occupies a minimal 0.8" (21 mm) space and includes numerous patented innovations that provide customers high performance and endurance in a very small package.

3 Available Designs

- Captive
- Non-Captive
- External Linear

The 21000 Series is available in a wide variety of resolutions - from 0.00006" (.0015mm) per step to 0.00157" (0.0 mm) per step.

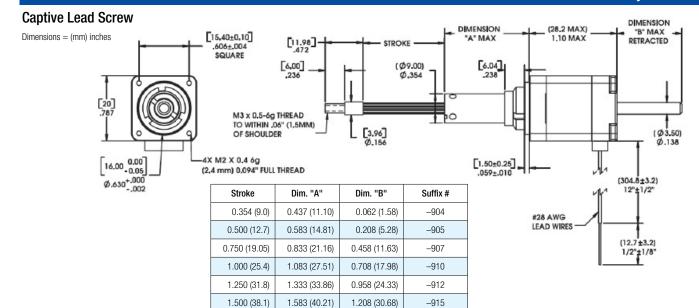
The Size 8 Actuator delivers thrust of up to 10 lbs

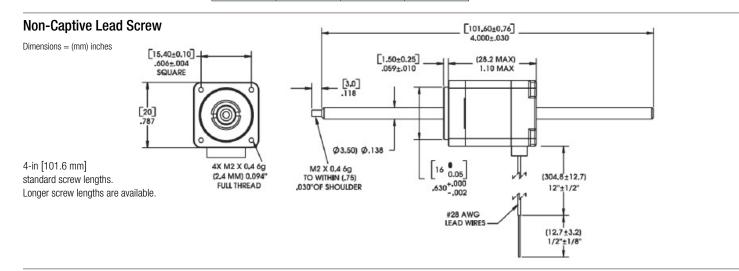
Specifications

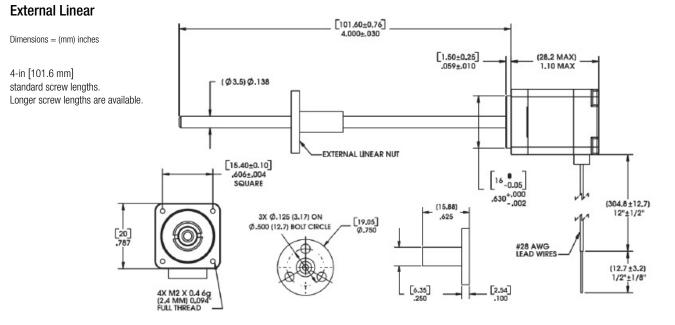
Size 8: 21 mm (0.8-in) Hybrid Linear Actuator (1.8° Step Angle)				
	Captive 21H4 +		_ †	
Part No.	Non-Captive	21F4 –	_ *	
	External Linear	E21H4 –	_ †	
Wiring		Bipolar		
Winding Voltage	2.5 VDC	5 VDC	7.5 VDC	
Current (RMS)/phase	.49 A	.24 A	.16 A	
Resistance/phase	5.1 Ω	20.4 Ω	45.9 Ω	
Inductance/phase	1.5 mH 5.0 mH 11.7 mH			
Power Consumption		2.45 W Total		
Rotor Inertia	1.4 gcm ²			
Insulation Class	Class B (Class F available)			
Weight	1.5 oz (43 g)			
Insulation Resistance		20 MΩ		

†Part numbering information on page 79.

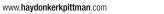
Linear Tra		
Screw Ø.14-	Order Code I.D.	
inches	mm	Oodo I.D.
.00006	.0015*	U**
.000098*	.0025	AA**
.00012	.0030*	N
.00019*	.005	AB
.00024	.006*	K
.00039*	.01	AC
.00048	.0121*	J
.00078*	.02	AD
.00157	.04	AE

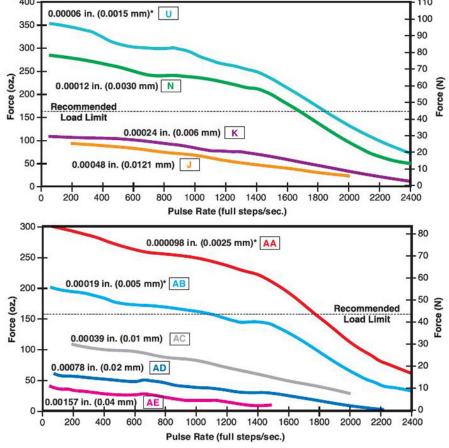

*Values truncated


**TFE coating not available


Standard motors are Class B rated for maximum temperature of

Special drive considerations may be necessary when leaving shaft fully extended or fully retracted.

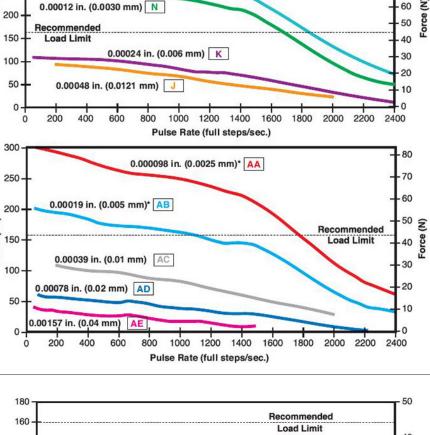

■ 21000 Series • Size 8 Hybrid Linear Actuator

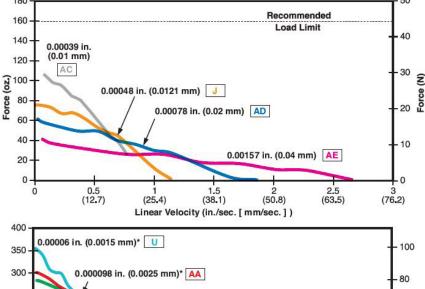


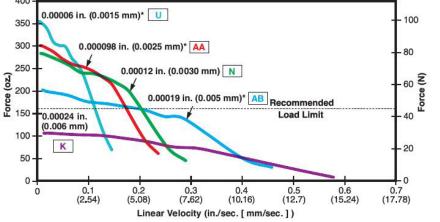
FORCE vs. PULSE RATE

- Chopper
- Bipolar
- 100% Duty Cycle
- Ø .14 (3.56) Lead Screw

FORCE vs. LINEAR VELOCITY


- Chopper
- Bipolar
- 100% Duty Cycle
- Ø .14 (3.56) Lead Screw


*Care should be taken when utilizing these screw pitches to ensure that the physical load limits of the motor are not exceeded. Please consult the factory for advice in selecting the proper pitch for your application.


NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.

Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.

Identifying the Hybrid Part Number Codes when Ordering

Е	21	Н	4	AB	— 7.5 —	910
Prefix	Series Number	Style	Coils	Code ID Resolution	Voltage	Suffix
(include only when	Designation	F = 1.8°	4 = Bipolar	Travel/Step	2.5 = 2.5 VDC	Stroke
using the following)	21 = 21000	Non-captive	(4 wire)	$U^* = .00006$ -in (.0015)	05 = 5 VDC	Example: $-910 = 1$ -in
$\mathbf{E} = \text{External}$	(Series numbers	$\mathbf{H} = 1.8^{\circ}$ Captive or		AA *= .000098-in (.0025)	7.5 = 7.5 VDC	(Refer to Stroke chart on Captive
K = External with	represent approximate	External (use "E"		N = .00012-in (.0030)	Custom V available	motor series product page.)
40° thread form	width of motor	or "K" Prefix for External version)		AB = .00019 - in (.005)	odotom v dvanabio	Suffix also represents:
P = Proximity	body)	External version)		K = .00024-in (.006)		-800 = Metric
Sensor				AC = .00039-in (.01)		-900 = External Linear with grease and flanged nut
$\mathbf{S} = \text{Home Position}$				J = .00048-in (.0121)		0
Switch				AD = .00078-in (.02)		–XXX = Proprietary suffix assigned to a specific customer
				AE = .00157-in (.04)		application. The identifier
				*TFE not available		can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 203 756 7441.

Hybrids: Stepping Sequence

	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8
묒	Step				
EXTEND CW	1	ON	0FF	ON	OFF
Q/ -	2	0FF	ON	ON	OFF
	3	OFF	ON	OFF	ON
•	4	ON	0FF	0FF	ON
	1	ON	0FF	ON	OFF

Note: Half stepping is accomplished by inserting an off state between transitioning phases.

BIPOLAR

	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8	
贝	Step					A
EXTEND	1	ON	0FF	ON	0FF	
QV —	2	OFF	ON	ON	OFF	CCW
1	3	OFF	ON	OFF	ON	RETRACT
•	4	ON	OFF	OFF	ON	RET
	1	ON	0FF	ON	0FF	

Integrated Connector for Hybrid Size 8

Offered alone or with a harness assembly, this connector is RoHS compliant and features a positive latch in order for high connection integrity. The connector is rated up to 2 amps and the mating connector will handle a range of wire gauges from 24 to 28. Ideal for those that want to plug in directly to pre-existing harnesses.

GREEN / WHITE

GREEN

Motor Connector:

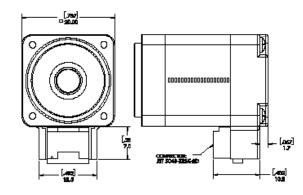
Hybrids: Wiring

RED

RED / WHITE

JST part # S04B-ZESK-2D

Mating Connector:

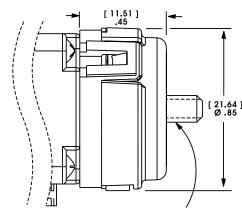

JST part # ZER-04V Haydon Kerk Part # 56-2369-1 (12 in. Leads)

Wire to Board Connector:

JST part # SZE-002T-P0.3

Pin #	Bipolar	Color
1	Phase 2 Start	G/W
2	Phase 2 Finish	Green
3	Phase 1 Finish	R/W
4	Phase 1 Start	Red

www.haydonkerkpittman.com



Encoders Designed for All Sizes of Hybrid Linear Actuators

All Haydon Hybrid Linear Actuators are available with specifically designed encoders for applications that require feedback. The compact optical incremental encoder design is available with two channel quadrature TTL squarewave outputs. An optional index is also available as a 3rd channel. The Size 8 Encoder provides resolutions for applications that require 250 and 300 counts per revolution. Encoders are available for all motor configurations - captive, non-captive and

Simplicity and low cost make Encoders ideal for both high and low volume motion control applications. The internal monolithic electronic module converts the real-time shaft angle, speed, and direction into TTL compatible outputs. The encoder module incorporates a lensed LED light source and monolithic photodetector array with signal shaping electronics to produce the two channel bounceless TTL outputs.

21mm 21000 Series Size 8

NOTE: Lead Screw extends beyond encoder on specific captive and non-captive motors. External linear shaft extension is available upon request.

Single Ended Encoder - Pinout - Size 8			
Connector Pin #	Description		
1	+5 VDC Power		
2	Channel A		
3	Ground		
4	Channel B		

Electrical Specifications				
	Minimum	Typical	Maximum	Units
Input Voltage	4.5	5.0	5.5	VDC
Output Signals	4.5	5.0	5.5	VDC

2 channel quadrature TTL squarewave outputs.

Channel B leads A for a clockwise rotation of the rotor viewed from the encoder cover.

Tracks at speeds of 0 to 100,000 cycles/sec.

Optional index available as a 3rd channel (one pulse per revolution).

perating Temperature					
Cizo 0	Minimum	Maximum			
Size 8	- 10°C (14°F)	85°C (185°F)			

Mechanical Specifications				
	Maximum			
Acceleration	250,000 rad/sec2			
Vibration (5 Hz to 2 kHz)	20 g			

Resolution					
4 Standard Cycles Per Revolution (CPR) or Pulses Per Revolution (PPR)					
Cino O	CPR	250	300		
Size 8	PPR	1000	1200		

21000 Series Size 8 Double Stack Hybrid Linear Actuators

Size 8 Double Stack Hybrid Stepper Motor Linear Actuators provide enhanced performance over a single stack.

Improved Performance & New Linear Motion Design Opportunities in a 20 mm Frame Size

3 Available Designs

- Captive
- Non-Captive
- External Linear

The 21000 Series is available in a wide variety of resolutions - from 0.000098 in (.0025 mm) per step to 0.00157 in (0.04 mm) per step. The Size 8 actuator delivers thrust of up to 17 lbs. (75 N).

Assembly options include: Incremental encoders, proximity sensors (captive types only), anti-backlash and custom nuts, and TFE coated lead screws.

Specifications

Size 8 Double Stack: 21 mm (0.8-in) Hybrid Linear Actuator (1.8° Step Angle)				
	Captive	21M4 – – †		
Part No.	Non-Captive	21L4 – – †		
	External Linear	E21M4 – – †		
Wiring	Bipolar			
Winding Voltage	2.5 VDC	5 VDC	7.5 VDC	
Current (RMS)/phase	1.32 A	.65 A	.43 A	
Resistance/phase	1.9Ω	7.7 Ω	17.3 Ω	
Inductance/phase	0.8 mH 3.2 mH 6.1 mH			
Power Consumption		6.5 W Total		
Rotor Inertia		2.6 gcm ²		
Insulation Class	Class B (Class F available)			
Weight	2.4 oz (43 g)			
Insulation Resistance		20 MΩ		

†Part numbering information on page 84.

Linear Tra		
Screw Ø.14-	Order Code I.D.	
inches	mm	oodo libi
.000098*	.0025	AA
.00012	.0030*	N
.00019*	.005	AB
.00024	.006*	K
.00039*	0.01	AC
.00048	.0121*	J
.00078*	.02	AD
.00157*	.04	AE
.00157	.04	AE

*Values truncated Standard motors are Class B rated for maximum temperature of

Special drive considerations may be necessary when leaving shaft fully extended or fully retracted.

www.haydonkerkpittman.com

www.haydonkerkpittman.com

[11.98]

6.00

Dim. "A"

0.437 (11.10)

0.583 (14.81)

0.833 (21.16)

1.083 (27.51)

1.333 (33.86)

1.583 (40.21)

2.083 (52.91)

Dim. "B"

0.000 (0.00)

0.011 (0.28)

0.261 (6.63)

0.511 (12.98)

0.761 (19.33)

1.011 (25.68

1.078 (43.38)

M3 x 0.5-6g THREAD

TO WITHIN .06" (1.5MM) OF SHOULDER

[15.40±0.10] .606±.004

SQUARE

4X M2 X 0.4 6g

(2.4 mm) 0.094" FULL THREAD

0.354 (9.0)

0.500 (12.7)

0.750 (19.05)

1.000 (25.4)

1.250 (31.8)

1.500 (38.1)

2 (50.8)

FORCE vs. PULSE RATE

Chopper

DIMENSION

"B" MAX RETRACTED

(304.8±3.2)

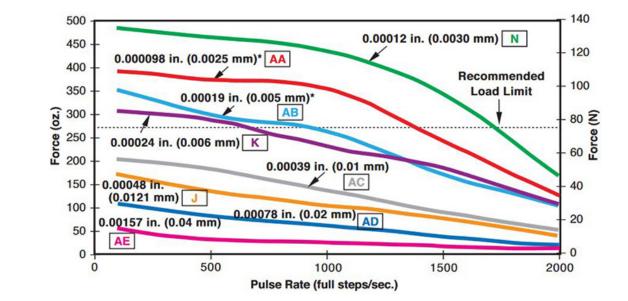
12"±1/2"

 (12.7 ± 3.2)

1/2"±1/8

[38.2 MAX]

1.50 MAX


#28 AWG LEAD WIRES

 $-\emptyset$.14 (3.56) Lead Screw

Bipolar

- 8:1 Motor Coil to Drive Supply Voltage

Non-Captive Lead Screw

16.00 0.00 -0.05

Ø.630^{+.000}

Captive Lead Screw

Dimensions = (mm) inches

Dimensions = (mm) inches

[101.60±0.76] 4.000±.030 [15.40±0.10]. [1.50±0.25] [38.2 MAX] SQUARE 1.50 MAX [20] .787 (Ø[3.56] 0.140) REFERENCE 16⁺⁰ -0.05 .630^{+,000} -.002 (304.8 ±12.7) 4X M2 X 0.4 6g M2 X 0.4 6g (2.4 MM) 0.094 TO WITHIN (.75) 12"+1/2" **FULL THREAD** .030"OF SHOULDER #28 AWG LEAD WIRES (12.7±3.2) 1/2"±1/8"

DIMENSION

"A" MAX

[6.04]

1.50±0.25

(Ø9.00) Ø.354

Suffix #

-904

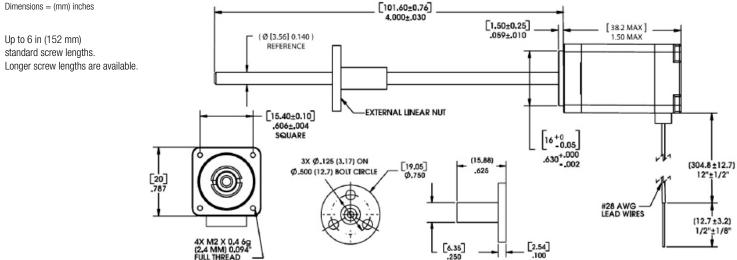
-905

-907

-910

-912

-915


-920

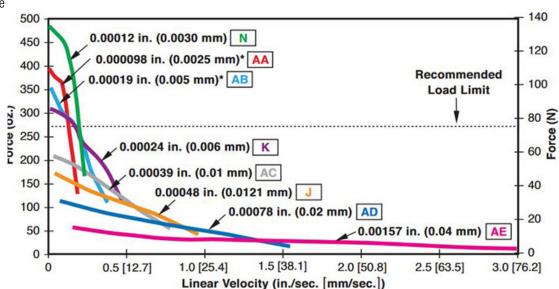
Up to 6 in (152 mm) standard screw lengths. Longer screw lengths are available.

External Linear

Dimensions = (mm) inches

Up to 6 in (152 mm) standard screw lengths.

FORCE vs. LINEAR VELOCITY


 $- \emptyset$.14 (3.56) Lead Screw

Bipolar

- 8:1 Motor Coil to Drive Supply Voltage

- 100% Duty Cycle

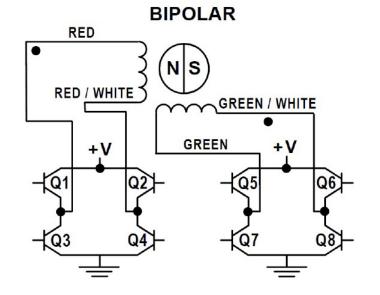
Chopper

*Care should be taken when utilizing these screw pitches to ensure that the physical load limits of the motor are not exceeded. Please consult the factory for advice in selecting the proper pitch for your application.

Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.



Identifying the Hybrid Part Number Codes when Ordering

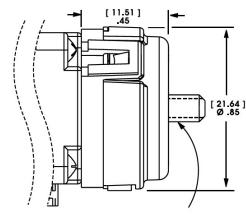
Е	21	M	4	N	2.5	910
Prefix	Series Number	Style	Coils	Code ID Resolution	Voltage	Suffix
(include only when	Designation	L = 1.8°	4 = Bipolar	Travel/Step	2.5 = 2.5 VDC	Stroke
using the following)	21 = 21000	Non-captive	(4 wire)	AA *= .000098-in (.0025)	05 = 5 VDC	Example: $-910 = 1$ -in
A = A Coil (See AC	(Series numbers represent	$\mathbf{M} = 1.8^{\circ}$ Captive or		N = .00012-in (.0030)	7.5 = 7.5 VDC	(Refer to Stroke chart on Captive
Synchronous	approximate	External (use "E" or "K" Prefix		AB = .00019 - in (.005)	Custom V available	motor series product page.)
Data Sheet)	width of motor	for External		K = .00024-in (.006)		Suffix also represents:
$\mathbf{E} = \text{External}$	body)	version)		AC = .00039 - in (.01)		-800 = Metric
$\mathbf{K} = \text{External with}$,		J = .00048-in (.0121)		−900 = External Linear with
40° thread				AD = .00078 - in (.02)		grease and flanged nut
form				AE = .00076 in (.02) AE = .00157 - in (.04)		–XXX = Proprietary suffix
P = Proximity				, ,		assigned to a specific customer
Sensor				*TFE not available		application. The identifier
						can apply to either a standard or custom part.
						or odotom part.

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 203 756 7441.

Hybrids: Wiring

Hybrids: Stepping Sequence

	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8	
贝	Step					A
EXTEND	1	ON	0FF	ON	OFF	
CW —	2	0FF	ON	ON	OFF	CCW
1	3	OFF	ON	OFF	ON	RETRACT
•	4	ON	OFF	OFF	ON	RET
	1	ON	0FF	ON	OFF	


Note: Half stepping is accomplished by inserting an off state between transitioning phases.

Encoders Designed for All Sizes of Hybrid Linear Actuators

All Haydon Hybrid Linear Actuators are available with specifically designed encoders for applications that require feedback. The compact optical incremental encoder design is available with two channel quadrature TTL squarewave outputs. An optional index is also available as a 3rd channel. The Size 8 Encoder provides resolutions for applications that require 250 and 300 counts per revolution. Encoders are available for all motor configurations – captive, non-captive and

Simplicity and low cost make Encoders ideal for both high and low volume motion control applications. The internal monolithic electronic module converts the real-time shaft angle, speed, and direction into TTL compatible outputs. The encoder module incorporates a lensed LED light source and monolithic photodetector array with signal shaping electronics to produce the two channel bounceless TTL outputs.

21mm 21000 Series Size 8

NOTE: Lead Screw extends beyond encoder on specific captive and non-captive motors. External linear shaft extension is available upon request.

Single Ended Encoder - Pinout - Size 8			
Connector Pin #	Description		
1	+5 VDC Power		
2	Channel A		
3	Ground		
4	Channel B		

Electrical Specifications					
	Minimum	Typical	Maximum	Units	
Input Voltage	4.5	5.0	5.5	VDC	
Output Signals	4.5	5.0	5.5	VDC	

2 channel quadrature TTL squarewave outputs.

Channel B leads A for a clockwise rotation of the rotor viewed from the encoder cover.

Tracks at speeds of 0 to 100,000 cycles/sec.

Optional index available as a 3rd channel (one pulse per revolution).

Operating Temperature		
Size 8	Minimum	Maximum
SIZE O	- 10°C (14°F)	85°C (185°F)

Mechanical Specifications				
	Maximum			
Acceleration	250,000 rad/sec2			
Vibration (5 Hz to 2 kHz)	20 g			

Resolution					
4 Standard Cycles Per Revolution (CPR) or Pulses Per Revolution (PPR)					
Size 8	CPR	250	300		
Size o	PPR	1000	1200		

28000 Series Size 11 Hybrid Linear Actuators

Compact, production-proven precision in motion.

The various patented designs deliver high performance, opening avenues for equipment designers who require performance and endurance in a very small package.

3 Available Designs

- Captive
- Non-Captive
- External Linear

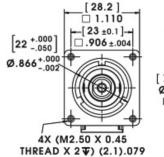
The 28000 Series is available in a wide variety of resolutions - from 0.000125-in (.003175 mm) per step to 0.002-in (.0508 mm) per step.

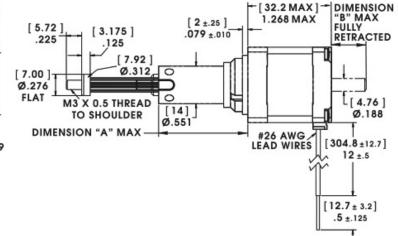
The Size 11 actuator delivers thrust of -up to 20 lbs. (90 N).

	Size 11: 28 mm (1.1-in) Hybrid Linear Actuator (1.8° Step Angle)						
	Captive	28H4	28H4 – †			28H6 – – †	
Part No.	Non-Captive	28F4		Ť	28F4 –	_ †	
	External Linear	E28H-	4 – –	t	E28H6 – –		
	Wiring	Bipolar			Unipo	olar**	
Wind	ling Voltage	2.1 VDC	2.1 VDC 5 VDC 12 VDC			12 VDC	
Curren	Current (RMS)/phase		0.42 A	0.18 A	0.42 A	0.18 A	
Resis	tance/phase	2.1	11.9 Ω	68.6 Ω	11.9 Ω	68.6 Ω	
Induc	tance/phase	1.5 mH	6.7 mH	39.0 mH	3.3 mH	19.5 mH	
Power	Consumption			4.2 W			
Ro	tor Inertia	9.0 gcm ²					
Insu	lation Class	Class B (Class F available)					
	Weight	4.2 oz (119 g)					
Insulati	on Resistance			20 MΩ			

*Part numbering information on page 89. ** Unipolar drive gives approximately 30% less thrust than bipolar dr

Linear Tra Screw Ø.187	Order Code I.D.				
inches	mm	Oodo I.D.			
.000125	.0031*	7			
.00025	.0063*	9			
.0005	.0127	3			
.001	.0254	1			
.002	.0508	2			

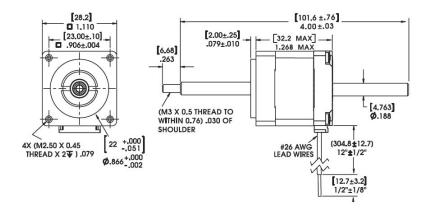

Standard motors are Class B rated for maximum temperature of 130°C.


Special drive considerations may be necessary when leaving shaft fully extended or fully retracted.

Captive Lead Screw

Dimensions = (mm) inches

Integrated connector option available

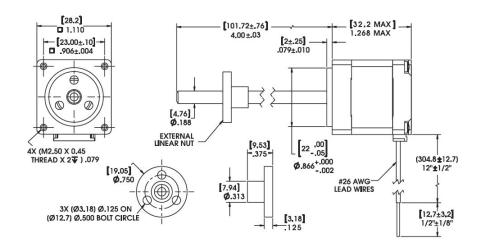

Stroke	Dim. "A"	Dim. "B"	Suffix #
0.500 (12.7)	0.806 (20.47)	0.208 (5.28)	-905
0.750 (19.05)	1.056 (26.82)	0.458 (11.63)	-907
1.000 (25.4)	1.306 (33.17)	0.708 (17.98)	-910
1.250 (31.8)	1.556 (39.52)	0.958 (24.33)	-912
1.500 (38.1)	1.806 (45.87)	1.208 (30.68)	-915
2.00 (50.8)	2.306 (58.57)	1.208 (30.68)	-920
2.500 (63.5)	2.806 (71.27)	1.208 (30.68)	-925
2.500 (63.5)	2.806 (71.27)	1.208 (30.68)	-925

Non-Captive Lead Screw

Dimensions = (mm) inches

Integrated connector option available

4-in [101.6 mm] standard screw lengths. Longer screw lengths are available.

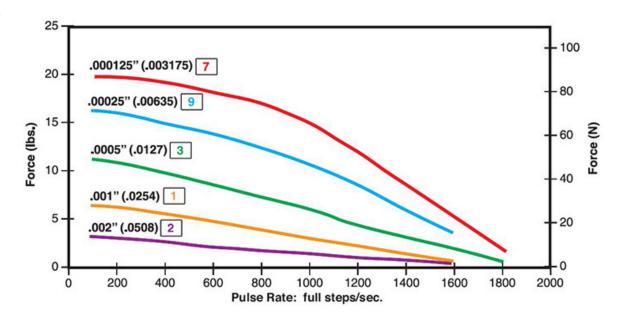


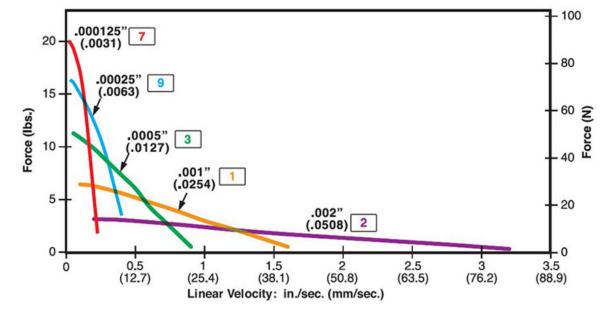
External Linear

Dimensions = (mm) inches

Integrated connector option available

4-in [101.6 mm] standard screw lengths. Longer screw lengths are available.




FORCE vs. PULSE RATE

- Chopper
- Bipolar
- 100% Duty Cycle
- Ø .1875 (4.75) Lead Screw

FORCE vs. LINEAR VELOCITY

- Chopper
- Bipolar
- 100% Duty Cycle
- Ø .1875 (4.75) Lead Screw

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.

Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

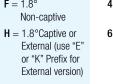
With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.

Prefix	Series Number
(include only when	Designation
using the following)	28 = 28000
A = A Coil (See AC	(Series numbers

28

represent

approximate


width of motor

body)

- using A = Synchronous Data Sheet)
- $\mathbf{E} = \text{External}$ K = External with 40° thread
- form $\mathbf{P} = \text{Proximity}$ Sensor **S** = Home Position

Switch

Style Coils **4** = Bipolar $F = 1.8^{\circ}$ Non-captive **6** = Unipolar (6 wire)

Code ID Resolution Travel/Step (4 wire) **1** = .001-in (.0254) **2**= .002-in (.0508)

Identifying the Hybrid Part Number Codes when Ordering

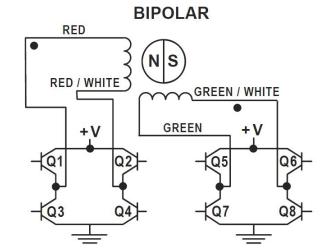
3 = .0005-in (.0127) **7** = .000125-in (.0031) 9 = .00025-in (.0063)

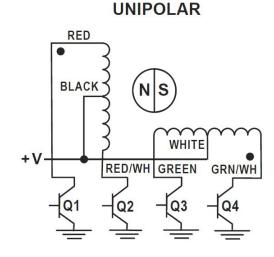
05 Voltage **2.1** = 2.1 VDC (Bipolar only) **05** = 5 VDC **12** = 12 VDC

Custom V available

Suffix Stroke Example: -910 = 1-in (Refer to Stroke chart on Captive

910


motor series product page.) Suffix also represents:


-800 = Metric-900 = External Linear with grease and flanged nut

-XXX = Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 203 756 7441.

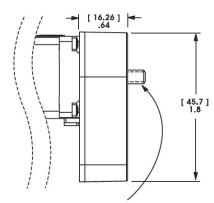
Hybrids: Wiring

Hybrids: Stepping Sequence

Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8	
Step					
1	ON	0FF	ON	0FF	
2	0FF	ON	ON	0FF	SCW.
3	OFF	ON	OFF	ON	RETRACT
4	ON	OFF	OFF	ON	RET
1	ON	OFF	ON	OFF	
	Step 1 2 3	Step 1	Step 1 ON OFF 2 OFF ON 3 OFF ON 4 ON OFF	Step OFF ON 1 ON OFF ON 2 OFF ON ON 3 OFF ON OFF 4 ON OFF OFF	Step ON OFF ON OFF 1 ON OFF ON OFF 2 OFF ON ON OFF 3 OFF ON OFF ON 4 ON OFF OFF ON

Note: Half stepping is accomplished by inserting an off state between transitioning phases.

■ 28000 Series • Size 11 Single Stack Stepper Motor Linear Actuators (Encoder-only Specifications)


Encoders Designed for All Sizes of Hybrid Linear Actuators

All Haydon Hybrid Linear Actuators are available with specifically designed encoders for applications that require feedback. The compact optical incremental encoder design is available with two channel quadrature TTL squarewave outputs. An optional index is also available as a 3rd channel. The Size 11 Encoder provides resolutions for applications that require 200, 400 and 1,000 counts per revolution. Encoders are available for all motor configurations.

Simplicity and low cost make the encoders ideal for both high and low volume motion control applications. The internal monolithic electronic module converts the real-time shaft angle, speed, and direction into TTL compatible outputs. The encoder module incorporates a lensed LED light source and monolithic photodetector array with signal shaping electronics to produce the two channel bounceless TTL outputs.

30 mm 28000 Series Size 11

NOTE: Lead Screw extends beyond encoder on specific captive and non-captive motors. External linear shaft extension is available upon request.

Differential Ended Encoder - Pinout - Size 11			
Connector Pin #	Description		
1	Ground		
2	Ground		
3	– Index		
4	+ Index		
5	Channel A —		
6	Channel A +		
7	+5 VDC Power		
8	+5 VDC Power		
9	Channel B –		
10	Channel B +		

Electrical Specifications					
	Minimum	Typical	Maximum	Units	
Input Voltage	4.5	5.0	5.5	VDC	
Output Signals	4.5	5.0	5.5	VDC	

- 2 channel quadrature TTL squarewave outputs.
- Channel B leads A for a clockwise rotation of the rotor viewed from the encoder cover.
- Tracks at speeds of 0 to 100,000 cycles/sec.
- Optional index available as a 3rd channel (one pulse per revolution).

Operating Temperature		
Size 11	Minimum	Maximum
Size II	- 40°C (- 40°F)	100°C (212°F)

Mechanical Specifications		
	Maximum	
Acceleration	250,000 rad/sec2	
Vibration (5 Hz to 2 kHz)	20 g	

Resolution				
4 Standard Cycles Per Revolution (CPR) or Pulses Per Revolution (PPR)				
CPR 200 400			400	1000*
Size 11	PPR	800	1600	4000*

*Index Pulse Channel not available. Contact us for additional resolution options

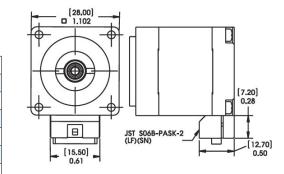
Single Ended Encoder - Pinout - Size 11					
Connector Pin #	Description	Connector Pin #	Description		
1	Ground	4	+5 VDC Power		
2	Index (optional)	5	Channel B		
3	Channel A				

Integrated Connector for Hybrid Size 11

Offered alone or with a harness assembly, this connector is RoHS compliant and features a positive latch in order for high connection integrity. The connector is rated up to 3 amps and the mating connector will handle a range of wire gauges from 22 to 28. Ideal for those that want to plug in directly to pre-existing harnesses.

Motor Connector:

JST part # S06B-PASK-2


Mating Connector:

JST part # PAP-06V-S Haydon Kerk Part #56-1210-5 (12 in. Leads)

Wire to Board Connector:

JST part number SPHD-001T-P0.5

Pin#	Bipolar	Unipolar	Color
1	Phase 2 Start	Phase 2 Start	G/W
2	Open	Phase 2 Common	-
3	Phase 2 Finish	Phase 2 Finish	Green
4	Phase 1 Finish	Phase 1 Finish	R/W
5	Open	Phase 1 Common	-
6	Phase 1 Start	Phase 1 Start	Red

28000 Series Size 11 Double Stack Hybrid Linear Actuators

Enhanced performance in motion control

The 28000 Series is available in a wide variety of resolutions - from 0.000125" (.003175 mm) per step to 0.002" (.0508 mm) per step.

3 Available Designs

- Captive
- Non-Captive
- External Linear

The Size 11 actuator delivers thrust of up to 30 lbs. (133 N).

	Size 11 Double S	tack: 28 mm (1.1-in) Hyb	rid Linear Actuator (1.8° S	Step Angle)
	Captive	28M4 – – †		
Part No.	Non-Captive		28L4 – – †	
	External Linear		E28M4 – – †	
	Wiring		Bipolar	
Wind	ding Voltage	2.1 VDC 5 VDC 12 VDC		
Curren	t (RMS)/phase	1.9 A 750 mA 313 mA		
Resis	tance/phase	1.1 Ω 6.7 Ω 34.8 Ω		
Induc	tance/phase	1.1 mH 5.8 mH 35.6 mH		
Power	Consumption		7.5 W Total	
Ro	tor Inertia	13.5 gcm ²		
Insu	lation Class	Class B (Class F available)		
	Weight	5.8 oz (180 g)		
Insulati	ion Resistance		20 MΩ	

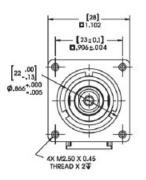
†Part numbering information on page 94

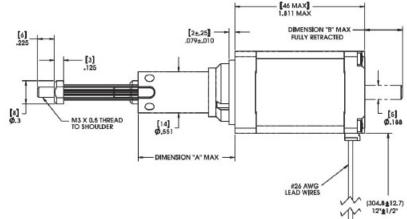
Linear Tra	Linear Travel / Step		
Screw Ø.187	Screw Ø.1875"(4.76mm)		
inches	mm	Code I.D.	
.000125	.0031*	7	
.00025	.0063*	9	
.0005	.0127	3	
.001	.0254	1	
.002	.0508	2	

*Values truncat

Standard motors are Class B rated for maximum temperature of 130°C.

Special drive considerations may be necessary when leaving shaft fully extended or fully retracted.

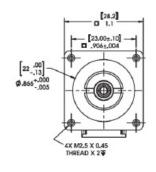


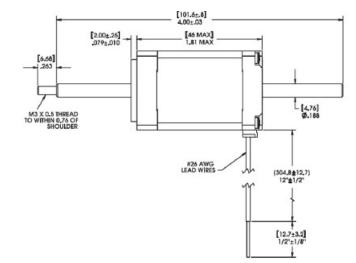

www.haydonkerkpittman.com

Captive Lead Screw

Dimensions = (mm) inches

Integrated connector option available

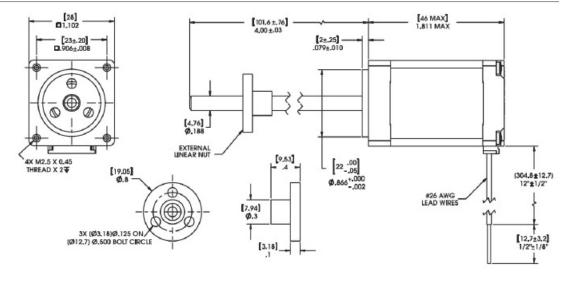

Stroke	Dim. "A"	Dim. "B"	Suffix #
0.500 (12.7)	0.80 (20.5)	0.09 (2.3)	-905
0.750 (19.05)	1.05 (26.8)	0.34 (8.6)	-907
1.000 (25.4)	1.30 (33.17)	0.59 (15.0)	-910
1.250 (31.8)	1.55 (39.5)	0.84 (21.35)	-912
1.500 (38.1)	1.806 (45.87)	1.09 (27.7)	-915
2.00 (50.8)	2.306 (58.57)	1.59 (40.4)	-920
2.500 (63.5)	2.806 (71.27)	2.09 (53.1)	-925


Non-Captive Lead Screw

Dimensions = (mm) inches

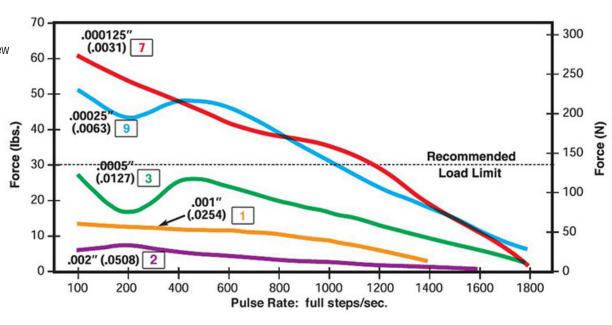
Integrated connector option available

4-in [101.6 mm] standard screw lengths. Longer screw lengths are available.



External Linear

Dimensions = (mm) inches

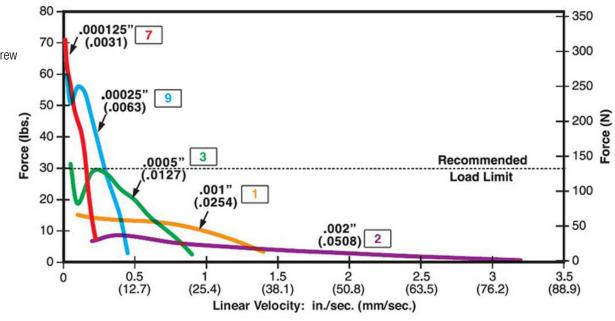

Integrated connector option available

4-in [101.6 mm] standard screw lengths. Longer screw lengths are available.

FORCE vs. PULSE RATE

- Chopper
- Bipolar
- 100% Duty Cycle
- Ø .1875 (4.75) Lead Screw

FORCE vs. LINEAR VELOCITY



Bipolar

[12.7±3.2] 1/2'±1/8"

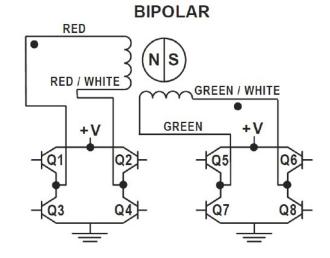
- 100% Duty Cycle

- Ø .1875 (4.75) Lead Screw

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.

Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.



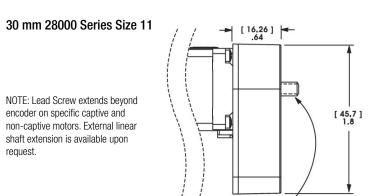
Identifying the Hybrid Part Number Codes when Ordering

Е	28	M	4	7	05	910
Prefix	Series Number	Style	Coils	Code ID Resolution	Voltage	Suffix Stroke
(include only when using the following) A = A Coil (See AC Synchronous Data Sheet) E = External K = External with	Designation 28 = 28000 (Series numbers represent approximate width of motor body)	L = 1.8° Non-captive M = 1.8°Captive or External (use "E" or "K" Prefix for External version)	4 = Bipolar (4 wire)	Travel/Step 1 = .001-in (.0254) 2= .002-in (.0508) 3 = .0005-in (.0127) 7 = .000125-in (.0031) 9 = .00025-in (.0063)	2.1 = 2.1 VDC (Bipolar only) 05 = 5 VDC 12 = 12 VDC Custom V available	Example: -910 = 1-in (Refer to Stroke chart on Captive motor series product page.) Suffix also represents: -800 = Metric -900 = External Linear with
40° thread form P = Proximity Sensor S = Home Position Switch						grease and flanged nut -XXX = Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 203 756 7441.

Hybrids: Wiring

Hybrids: Stepping Sequence


	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8	
\mathbb{Z}	Step					A
EXTEND	1	ON	0FF	ON	OFF	
CW —	2	0FF	ON	ON	OFF	CCW
	3	0FF	ON	0FF	ON	RETRACT
•	4	ON	OFF	OFF	ON	REL
	1	ON	OFF	ON	OFF	

Note: Half stepping is accomplished by inserting an off state between transitioning phases.

Encoders Designed for All Sizes of Hybrid Linear Actuators

All Haydon Hybrid Linear Actuators are available with specifically designed encoders for applications that require feedback. The compact optical incremental encoder design is available with two channel quadrature TTL squarewave outputs. An optional index is also available as a 3rd channel. The Size 11 Encoder provides resolutions for applications that require 200, 400 and 1,000 counts per revolution. Encoders are available for all motor configurations.

Simplicity and low cost make the encoders ideal for both high and low volume motion control applications. The internal monolithic electronic module converts the real-time shaft angle, speed, and direction into TTL compatible outputs. The encoder module incorporates a lensed LED light source and monolithic photodetector array with signal shaping electronics to produce the two channel bounceless TTL outputs.

Differential Ended Encod	Differential Ended Encoder - Pinout - Size 11				
Connector Pin #	Description				
1	Ground				
2	Ground				
3	– Index				
4	+ Index				
5	Channel A –				
6	Channel A +				
7	+5 VDC Power				
8	+5 VDC Power				
9	Channel B –				
10	Channel B +				

Electrical Specifications							
	Minimum	Typical	Maximum	Units			
Input Voltage	4.5	5.0	5.5	VDC			
Output Signals	4.5	5.0	5.5	VDC			

2 channel quadrature TTL squarewave outputs.

Channel B leads A for a clockwise rotation of the rotor viewed from the encoder cover.

Tracks at speeds of 0 to 100,000 cycles/sec.

Optional index available as a 3rd channel (one pulse per revolution).

Operating Temperature		
Cizo 11	Minimum	Maximum
Size 11	- 40°C (- 40°F)	100°C (212°F)

Mechanical Specifications					
	Maximum				
Acceleration	250,000 rad/sec2				
Vibration (5 Hz to 2 kHz)	20 g				

Resolution							
4 Standard Cycles Per Revolution (CPR) or Pulses Per Revolution (PPR)							
Size 11	CPR	200	400	1000*			
SIZE II	PPR	800	1600	4000*			

*Index Pulse Channel not available. Contact us for additional resolution option

Single Ended Encoder - Pinout - Size 11					
Connector Pin #	Description	Connector Pin #	Description		
1 Ground		4	+5 VDC Power		
2	Index (optional)	5	Channel B		
3	Channel A				

Integrated Connector for Hybrid Size 11

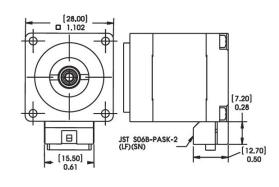
Offered alone or with a harness assembly, this connector is RoHS compliant and features a positive latch in order for high connection integrity. The connector is rated up to 3 amps and the mating connector will handle a range of wire gauges from 22 to 28. Ideal for those that want to plug in directly to pre-existing harnesses.

Motor Connector:

JST part # S06B-PASK-2

Mating Connector:

JST part # PAP-06V-S


Haydon Kerk part #56-1210-5 (12 in. Lead

Wire to Board Connector:

JST part # SPHD-001T-P0.5

ai iui	in the those that want to plug in uneony to pre-existing namesses.					
	Pin#	Bipolar	Unipolar	Color		
	1	Phase 2 Start	Phase 2 Start	G/W		
	2	Open	Phase 2 Common	-		
da)	3	Phase 2 Finish	Phase 2 Finish	Green		
ds)	4	Phase 1 Finish	Phase 1 Finish	R/W		
	5	Open	Phase 1 Common	-		
	6	Phase 1 Start	Phase 1 Start	Red		

www.haydonkerkpittman.com

om

Higher force, longer life and improved performance

The various patented designs deliver exceptional performance and new linear motion design opportunities.

3 Available Designs

- Captive
- Non-Captive
- External Linear

The 35000 Series is available in a wide variety of resolutions - from 0.00012-in (.003048 mm) per step to 0.00192-in (.048768 mm) per step. The motors can also be microstepped for even finer resolutions.

The Size 14 actuator delivers thrust of -up to 50 lbs. (222 N).

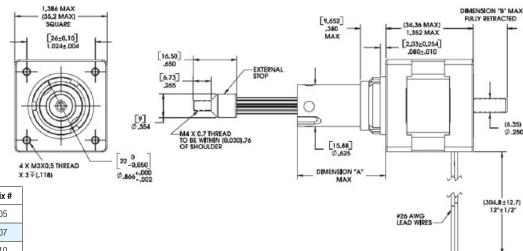
	Size 14: 35 mm (1.1-in) Hybrid Linear Actuator (1.8° Step Angle)						
	Captive	35H4	!	Ť	35H6 –	_ †	
Part No.	Non-Captive	35F4		Ť	35F4 – – †		
	External Linear	E35H	4 – –	Ť	E35H6 – – †		
	Wiring		Bipolar		Unipo	Unipolar**	
Wind	Winding Voltage		5 VDC	12 VDC	5 VDC	12 VDC	
Curren	Current (RMS)/phase		0.57 A	0.24 A	0.57 A	0.24 A	
Resis	tance/phase	1.86 Ω	8.8 Ω	50.5 Ω	8.8 Ω	50.5 Ω	
Induc	tance/phase	2.8 mH	13 mH	60 mH	6.5 mH	30 mH	
Power	Consumption	5.7 W					
Ro	tor Inertia			16.0 gcm ²			
Insu	lation Class	Class B (Class F available)					
	Weight	5.7 oz (162 g)					
Insulati	on Resistance			20 MΩ			

†Part numbering information on page 100. ** Unipolar drive gives approximately 30% less thrust than bipolar drive.

der
e I.D.
N
K
J
Q
R

Linear Travel / Step			
Screw Ø .250" (6.35 mm)			
inches mm			
.0039*	Р		
.0079*	А		
.0158*	В		
.00125 .0317*			

Standard motors are Class B rated for maximum temperature of 130°C.

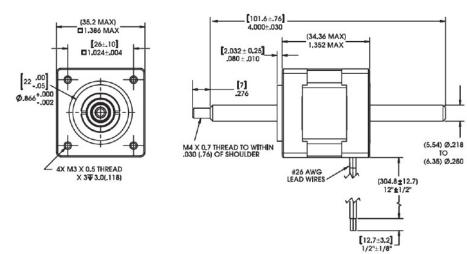

Special drive considerations may be necessary when leaving shaft fully extended or fully retracted.

35000 Series • Size 14 Single Stack Stepper Motor Linear Actuators

Captive Lead Screw

Dimensions = (mm) inches

Integrated connector option available

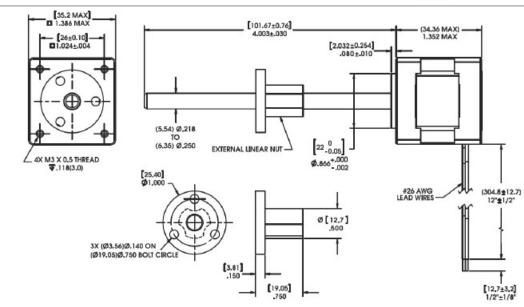

Stroke	Dim. "A"	Dim. "B"	Suffix #
0.500 (12.7)	0.82 (20.8)	0.04 (1.0)	-905
0.750 (19.05)	1.07 (27.2)	0.29 (7.4)	-907
1.000 (25.4)	1.32 (33.5)	0.54 (13.7)	-910
1.250 (31.8)	1.57 (39.9)	0.79 (20.1)	-912
1.500 (38.1)	1.82 (46.2)	1.04 (26.4)	-915
2.00 (50.8)	2.32 (58.9)	1.54 (39.1)	-920
2.500 (63.5)	2.82 (71.6)	2.04 (51.8)	-925

Non-Captive Lead Screw

Dimensions = (mm) inches

Integrated connector option available

4-in [101.6 mm] standard screw lengths. Longer screw lengths are available.

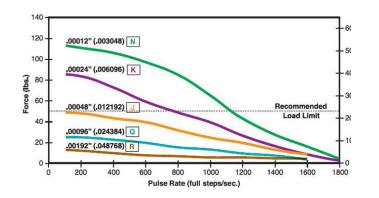


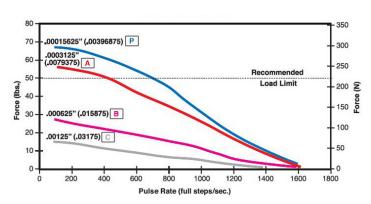
External Linear

Dimensions = (mm) inches

Integrated connector option available

4-in [101.6 mm] standard screw lengths. Longer screw lengths are available.

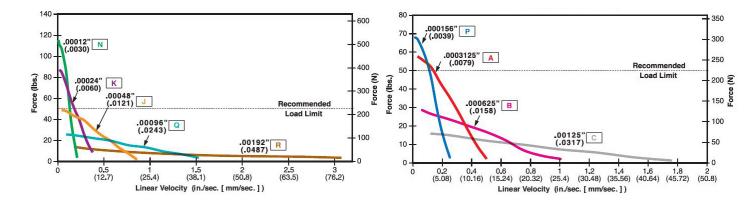



(12.7±3.2) 1/2"±1/8"

FORCE vs. PULSE RATE — Chopper — Bipolar — 100% Duty Cycle

- Ø .218 (5.54) Lead Screw

- Ø .250 (6.35) Lead Screw



FORCE vs. LINEAR VELOCITY — Chopper — Bipolar — 100% Duty Cycle

- Ø .218 (5.54) Lead Screw

- Ø .250 (6.35) Lead Screw

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.

Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.

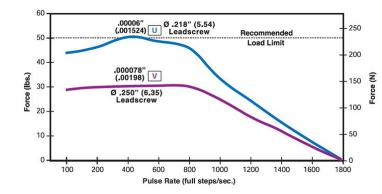
35000 Series Size 14, 0.9° High Resolution Motor

Compared to the standard resolution (1.8°) this motor has been engineered to precisely deliver reliable high speed, force, up to 50 lbs (222 N), as well as a full step movement as low as 1.5 microns.

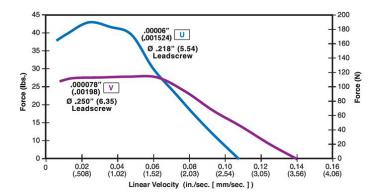
	Size 14: 35 mm (1.1-in) Hybrid Linear Actuator (0.9° Step Angle)					
	Captive	35K4 – – †			35K6 –	t
Part No.	Non-Captive	35J4	35J4 – – †			t
	External Linear	E35K4	4 – –	t	E35K6 –	_ t
	Wiring		Bipolar		Unipo	olar**
Wind	ding Voltage	2.33 VDC	5 VDC	12 VDC	5 VDC	12 VDC
Curren	t (RMS)/phase	1.25 A	1.25 A 0.57 A 0.24 A		0.57 A	0.24 A
Resis	tance/phase	1.86 Ω	1.86 Ω 8.8 Ω 50.5 Ω			50.5 Ω
Induc	tance/phase	2.8 mH 13 mH 60 mH			6.5 mH	30 mH
Power	Consumption	5.7 W				
Ro	tor Inertia	16.0 gcm ²				
Insu	lation Class	Class B (Class F available)				
	Weight	5.7 oz (162 g)				
Insulati	ion Resistance	20 ΜΩ				

Linear Tra Screw Ø .218	Order Code I.D.	
inches	mm	0000 1121
.00006	.0015*	U
.00012	.0030*	N
.00024	.0060*	K
.00048	.0121*	J
.00096	.0243*	Q

Linear Tra		
Screw Ø .250	Order Code I.D.	
inches mm		00001.5.
.000078*	.00198*	V
.00015625	.0039*	Р
.0003125	.0079*	А
.000625	.0158*	В


^{*}Values truncated

Standard motors are Class B rated for maximum temperature of 130°C.


NOTE: Refer to performance curves on previous page for codes N, K, J, Q, P, A, B

Special drive considerations may be necessary when leaving shaft fully extended or fully retracted.

FORCE vs. PULSE RATE — Chopper — Bipolar — 100% Duty Cycle with two available lead screw diameters

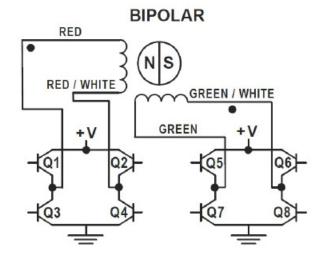
FORCE vs. LINEAR VELOCITY – Chopper – Bipolar – 100% Duty Cycle with two available lead screw diameters

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.

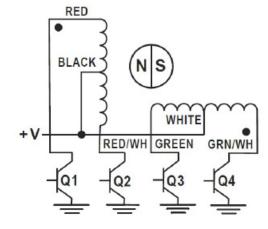
Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.

*****Haydon**(kerk)



Identifying the Hybrid Part Number Codes when Ordering

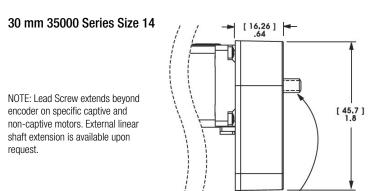

E	35	Н	4	N	2.33	910
Prefix	Series Number	Style	Coils	Code ID Resolution	Voltage	Suffix
(include only when	Designation	F = 1.8°	4 = Bipolar	Travel/Step	2.33 = 2.33 VDC	Stroke
using the following)	35 = 35000	Non-captive	(4 wire)	N = .00012-in (.0030)	05 = 5 VDC	Example: $-910 = 1$ -in
A = A Coil (See AC)	(Series numbers	$H = 1.8^{\circ}$ Captive or	6 = Unipolar	K = .00024-in (.0060)	12 = 12 VDC	(Refer to Stroke chart on Captive
Synchronous Data Sheet)	represent approximate	External (use "E" or "K" Prefix for	(6 wire)	J = .00048-in (.0121)	Custom V available	motor series product page.)
E = External	width of motor	External version)		Q = .00096-in (.0243)		Suffix also represents:
K = External with	body)	$\mathbf{J} = 0.9^{\circ}$		P = .00015625-in (.0039)		-800 = Metric
40° thread		Non-captive		A = .0003125-in (.0079)		-900 = External Linear with
form		$\mathbf{K} = 0.9^{\circ}$ Captive or		B = .000625-in (.0158)		grease and flanged nut
P = Proximity		External (use "E"		C = .00125-in (.0317)		-XXX = Proprietary suffix
Sensor		or "K" Prefix for		$\mathbf{R} = .00192 \cdot \text{in} (.0478)$		assigned to a specific customer application. The identifier
S = Home Position		External version)		1100102 iii (.0470)		can apply to either a standard
Switch				High Resolution		or custom part.
				U = .00006-in (.0015)		
				V = .000078-in (.00198)		

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 203 756 7441

Hybrids: Wiring

UNIPOLAR

Hybrids: **Stepping Sequence**


	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8	
贝	Step					4
EXTEND CW	1	ON	OFF	ON	0FF	
CW —	2	0FF	ON	ON	OFF	W. C.
1	3	OFF	ON	OFF	ON	RETRACT
Y	4	ON	0FF	OFF	ON	PH
	1	ON	0FF	ON	0FF	

Note: Half stepping is accomplished by inserting an off state between transitioning phases.

Encoders Designed for All Sizes of Hybrid Linear Actuators

All Haydon Hybrid Linear Actuators are available with specifically designed encoders for applications that require feedback. The compact optical incremental encoder design is available with two channel quadrature TTL squarewave outputs. An optional index is also available as a 3rd channel. The Size 14 Encoder provides resolutions for applications that require 200, 400 and 1,000 counts per revolution. Encoders are available for all motor configurations.

Simplicity and low cost make the encoders ideal for both high and low volume motion control applications. The internal monolithic electronic module converts the real-time shaft angle, speed, and direction into TTL compatible outputs. The encoder module incorporates a lensed LED light source and monolithic photodetector array with signal shaping electronics to produce the two channel bounceless TTL outputs.

Differential Ended Encoder - Pinout - Size 14		
Connector Pin #	Description	
1	Ground	
2	Ground	
3	– Index	
4	+ Index	
5	Channel A –	
6	Channel A +	
7	+5 VDC Power	
8	+5 VDC Power	
9	Channel B –	
10	Channel B +	

Electrical Specifications				
	Minimum	Typical	Maximum	Units
Input Voltage	4.5	5.0	5.5	VDC
Output Signals	4.5	5.0	5.5	VDC

2 channel quadrature TTL squarewave outputs.

Channel B leads A for a clockwise rotation of the rotor viewed from the encoder cover.

Tracks at speeds of 0 to 100,000 cycles/sec.

Optional index available as a 3rd channel (one pulse per revolution).

Operating Temperature		
Cino 14	Minimum	Maximum
Size 14	- 40°C (- 40°F)	100°C (212°F)

Mechanical Specifications		
	Maximum	
Acceleration	250,000 rad/sec2	
Vibration (5 Hz to 2 kHz)	20 g	

Resolution					
4 Standard Cycles Per Revolution (CPR) or Pulses Per Revolution (PPR)					
Size 14	CPR	200	400	1000*	
SIZE 14	PPR	800	1600	4000*	

*Index Pulse Channel not available. Contact us for additional resolution options

Single Ended Encoder - Pinout - Size 14					
Connector Pin #	Description	Connector Pin #	Description		
1	Ground	4	+5 VDC Power		
2	Index (optional)	5	Channel B		
3	Channel A				

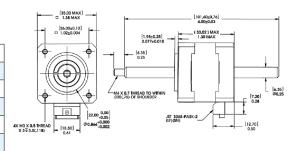
Integrated Connector for Hybrid Size 14

Offered alone or with a harness assembly, this connector is RoHS compliant and features a positive latch in order for high connection integrity. The connector is rated up to 3 amps and the mating connector will handle a range of wire gauges from 22 to 28. Ideal for those that want to plug in directly to pre-existing harnesses.

Motor Connector:

JST part # S06B-PASK-2

Mating Connector:


JST part # PAP-06V-S

Haydon Kerk Part #56-1210-5 (12 in. Le

Wire to Board Connector:

JST part number SPHD-001T-P0.5

acai ici	ar for allood that want to play in alloody to pro oxiditing harmodoo.					
	Pin # Bipolar		Unipolar	Color		
	1	Phase 2 Start	Phase 2 Start	G/W		
	2	Open	Phase 2 Common	_		
oodo)	3	Phase 2 Finish	Phase 2 Finish	Green		
.eads)	4	Phase 1 Finish	Phase 1 Finish	R/W		
	5	Open	Phase 1 Common	_		
	6	Phase 1 Start	Phase 1 Start	Red		

Maydon (kerk) www.haydonkerkpittman.com

Improved force and performance

The 35000 Series is available in a wide variety of resolutions - from 0.000625-in (.0158 mm) per step to 0.005-in (.127 mm) per step. The motors can also be microstepped for even finer resolutions.

3 Available Designs

- Captive
- Non-Captive
- External Linear

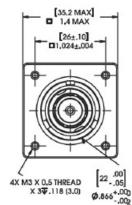
The Size 14 actuator delivers thrust of up to 50 lbs. (222 N).

	Size 14 Double Stack: 35 mm (1.4-in) Hybrid Linear Actuator (1.8° Step Angle)						
	Captive		35M4 – †				
Part No.	Non-Captive		35L4 – – †				
	External Linear		E35M4 – – †				
	Wiring	Bipolar					
Wind	ling Voltage	2.33 VDC 5 VDC 12 VDC					
Current	t (RMS)/phase	2 A 910 mA 380 mA					
Resis	tance/phase	1.2 Ω 5.5 Ω 31.6 Ω					
Induc	tance/phase	1.95 mH 7.63 mH 65.1 mH					
Power	Consumption	9.1 W Total					
Ro	tor Inertia	30 gcm ²					
Insu	lation Class	Class B (Class F available)					
,	Weight	8.5 oz (240 g)					
Insulati	on Resistance		20 MΩ				

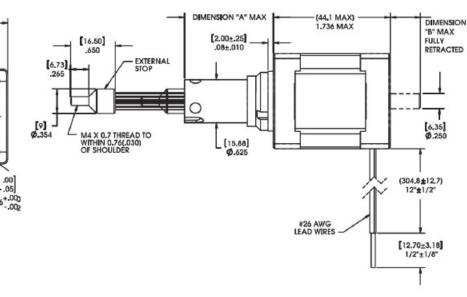
the contract of the contract o		
[†] Part numbering inform	nation on nage	105

Linear Tra	Order Code I.D.	
inches	mm	Code I.D.
.000625	.0158*	В
.00125	.0317*	С
.0025	.0635	Υ
.00375	.0953	AG
.005	.127	Z

Standard motors are Class B rated for maximum temperature of 130°C.


Special drive considerations may be necessary when leaving shaft fully extended or fully retracted.

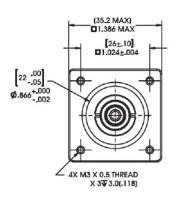
35000 Series • Size 14 Double Stack Stepper Motor Linear Actuators

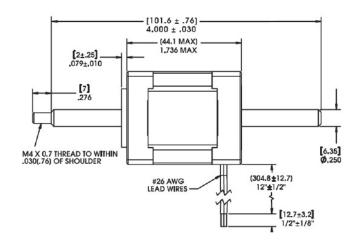

Captive Lead Screw

Dimensions = (mm) inches

Integrated connector option available

Stroke	Dim. "A"	Dim. "B"	Suffix #
0.500 (12.7)	0.82 (20.8)	0.04 (1.0)	-905
0.750 (19.05)	1.07 (27.2)	0.29 (7.4)	-907
1.000 (25.4)	1.32 (33.5)	0.54 (13.7)	-910
1.250 (31.8)	1.57 (39.9)	0.79 (20.1)	-912
1.500 (38.1)	1.82 (46.2)	1.04 (26.4)	-915
2.00 (50.8)	2.32 (58.9)	1.54 (39.1)	-920
2.500 (38.1)	2.82 (71.6)	2.04 (51.8)	-925

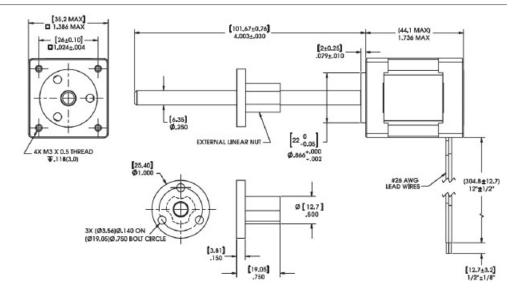



Non-Captive Lead Screw

Dimensions = (mm) inches

Integrated connector option available

4-in [101.6 mm] standard screw lengths. Longer screw lengths are available.



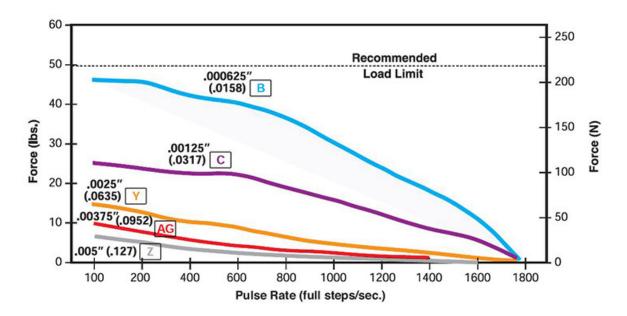
External Linear

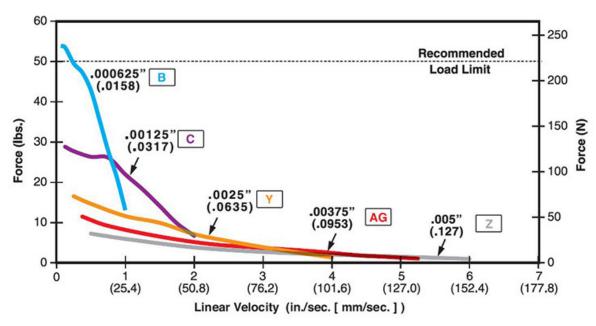
Dimensions = (mm) inches

Integrated connector option available

4-in [101.6 mm] standard screw lengths. Longer screw lengths are available.

Haydon (kerk)




FORCE vs. PULSE RATE

- Chopper
- Bipolar
- 100% Duty Cycle
- Ø .250 (6.35)Lead Screw

FORCE vs. LINEAR VELOCITY

- Chopper
- Bipolar
- 100% Duty Cycle
- Ø .250 (6.35) Lead Screw

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.

Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.

Identifying the Hybrid Part Number Codes when Ordering

Е	35	L	4	В	12	910
Prefix	Series Number	Style	Coils	Code ID Resolution	Voltage	Suffix
(include only when	Designation	L = 1.8°	4 = Bipolar	Travel/Step	2.33 = 2.33 VDC	Stroke
using the following)	35 = 35000	Non-captive	(4 wire)	$\mathbf{B} = .000625 \text{-in} (.0158)$	05 = 5 VDC	Example: $-910 = 1$ -in
A = A Coil (See AC Synchronous	(Series numbers represent	M = 1.8°Captive or External (use		C = .00125-in (.0317)	12 = 12 VDC	(Refer to Stroke chart on Captive motor series product page.)
Data Sheet)	approximate width of motor	"E" or "K" Prefix for External		Y = .0025-in (.0635)) AG = .00375-in (.0953)	Custom V available	Suffix also represents:
E = External	body)	version)		Z = .005-in (.127)		-800 = Metric
K = External with 40° thread form		vorsionj		Z = .000 iii (.127)		-900 = External Linear with grease and flanged nut
P = Proximity Sensor						-XXX = Proprietary suffix assigned to a specific customer
S = Home Position Switch						application. The identifier can apply to either a standard or custom part.
		NOTE: Dashes must be included i	n Part Number (–) as shown at	ove. For assistance call our Engineering	Team at 203 756 7441.	

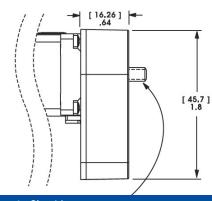
Hybrids: Wiring

BIPOLAR RED RED / WHITE) GREEN / WHITE **GREEN**

Hybrids: Stepping Sequence

	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8	
\mathbb{Z}	Step					1
EXTEND CW	1	ON	0FF	ON	0FF	
QV —	2	OFF	ON	ON	0FF	100
	3	OFF	ON	OFF	ON	5
•	4	ON	OFF	OFF	ON	- 6
	1	ON	OFF	ON	OFF	

Note: Half stepping is accomplished by inserting an off state between transitioning phases.


Encoders Designed for All Sizes of Hybrid Linear Actuators

All Haydon Hybrid Linear Actuators are available with specifically designed encoders for applications that require feedback. The compact optical incremental encoder design is available with two channel quadrature TTL squarewave outputs. An optional index is also available as a 3rd channel. The Size 14 Encoder provides resolutions for applications that require 200, 400 and 1,000 counts per revolution. Encoders are available for all motor configurations.

Simplicity and low cost make the encoders ideal for both high and low volume motion control applications. The internal monolithic electronic module converts the real-time shaft angle, speed, and direction into TTL compatible outputs. The encoder module incorporates a lensed LED light source and monolithic photodetector array with signal shaping electronics to produce the two channel bounceless TTL outputs.

30 mm 35000 Series Size 14

NOTE: Lead Screw extends beyond encoder on specific captive and non-captive motors. External linear shaft extension is available upon request.

Differential Ended Encod	Differential Ended Encoder - Pinout - Size 14			
Connector Pin #	Description			
1	Ground			
2	Ground			
3	– Index			
4	+ Index			
5	Channel A –			
6	Channel A +			
7	+5 VDC Power			
8	+5 VDC Power			
9	Channel B –			
10	Channel B +			

Electrical Specifications						
	Minimum	Typical	Maximum	Units		
Input Voltage	4.5	5.0	5.5	VDC		
Output Signals	4.5	5.0	5.5	VDC		

- 2 channel quadrature TTL squarewave outputs.
- Channel B leads A for a clockwise rotation of the rotor viewed from the encoder cover.
- Tracks at speeds of 0 to 100,000 cycles/sec.
- Optional index available as a 3rd channel (one pulse per revolution).

Operating Temperature		
Cizo 14	Minimum	Maximum
Size 14	- 40°C (- 40°F)	100°C (212°F)

Mechanical Specifications				
	Maximum			
Acceleration	250,000 rad/sec2			
Vibration (5 Hz to 2 kHz)	20 g			

Resolution					
4 Standard Cycles Per Revolution (CPR) or Pulses Per Revolution (PPR)					
CPR 200 400 1000*					
Size 14	PPR	800	1600	4000*	

*Index Pulse Channel not available. Contact us for additional resolution options

Single Ended Encoder - Pinout - Size 14					
Connector Pin # Description		Connector Pin #	Description		
	1	Ground	4	+5 VDC Power	
	2	Index (optional)	5	Channel B	
	3	Channel A			

Integrated Connector for Hybrid Size 14

Offered alone or with a harness assembly, this connector is RoHS compliant and features a positive latch in order for high connection integrity. The connector is rated up to 3 amps and the mating connector will handle a range of wire gauges from 22 to 28. Ideal for those that want to plug in directly to pre-existing harnesses.

Motor Connector:

JST part # S06B-PASK-2

Mating Connector:

JST part # PAP-06V-S

Haydon Kerk Part #56-1210-5 (12 in. Leads)

Wire to Board Connector:

JST part number SPHD-001T-P0.5

	Pin#	Bipolar	Unipolar	Color
	1	Phase 2 Start	Phase 2 Start	G/W
	2	Open	Phase 2 Common	_
	3	Phase 2 Finish	Phase 2 Finish	Green
)	4	Phase 1 Finish	Phase 1 Finish	R/W
	5	Open	Phase 1 Common	-
	6	Phase 1 Start	Phase 1 Start	Red

1.94.0.28 (3.30) MAX 0.7 INEXAD D WITHIN (3.35) MAX 0.7 SERAD OF SHOULD R (3.35) MAX 0.7 SERAD D WITHIN (3.35) MAX 0.7 SERAD D
--

43000 Series Size 17 Hybrid Linear Actuators

Our best selling compact hybrid motors

Top selling designs deliver high performance, opening avenues for equipment designers who previously settled for products with inferior performance and endurance.

3 Available Designs

- Captive
- Non-Captive
- External Linear

The 43000 Series is available in a wide variety of resolutions from 0.00006-in. (.001524 mm) per step to 0.00192-in. (.048768 mm) per step, and delivers thrust of up to 50 lbs. (222 N), or speeds exceeding 3 inches (7.62 cm) per second.

Size 17: 43 mm (1.7-in) Hybrid Linear Actuator (1.8° Step				p Angle)		
	Captive	43H4		Ť	43H6 –	_ †
Part No.	Non-Captive	43F4		Ť	43F4 –	_ †
	External Linear	E43H	4 – –	t	E43H6 –	_ †
	Wiring		Bipolar		Unipolar**	
Wind	ding Voltage	2.33 VDC	5 VDC	12 VDC	5 VDC	12 VDC
Curren	Current (RMS)/phase		700 mA	290 mA	700 mA	290 mA
Resis	stance/phase	1.56 Ω	7.2 Ω	41.5 Ω	7.2 Ω	41.5 Ω
Induc	ctance/phase	1.9 mH	8.7 mH	54.0 mH	4.4 mH	27.0 mH
Power	Consumption			7 W		
Ro	otor Inertia	37 gcm ²				
Insulation Class B (Class B (C				s B (Class F availa	able)	
Weight 8.5 oz (241 g)						
Insulat	ion Resistance			20 MΩ		

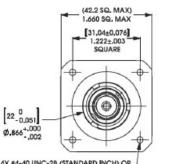
†Part numbering information on page 110. ** Unipolar drive gives approximately 30% less thrust than bipolar drive.

Linear Trave		
Screw Ø .218"	Order Code I.D.	
inches	oodo iibi	
.00012	.0030*	N
.00024	.0060*	K
.00048	.0121*	J
.00096	.0243*	Q
.00192 .0487*		R

Linear Tra	Order	
Screw Ø .25	Code I.D.	
inches	mm	0000 1151
.00015625	.0039*	Р
.0003125	.0079*	А
.000625	.0158*	В
.00125	.0317*	С

Standard motors are Class B rated for maximum temperature of 130°C. Also available, motors with high temperature capability windings up to 155°C.

Special drive considerations may be necessary when leaving shaft fully extended or fully retracted.



■ 43000 Series • Size 17 Single Stack Stepper Motor Linear Actuators

Captive Lead Screw

Dimensions = (mm) inches

Integrated connector option available

4X #4-40 UNC-2B (STANDARD INCH) 4X M3 x 0.5-6g (STANDARD METRIC) THREAD x 0.15 (3.8) DEEP (MUST BE SPECIFIED WHEN ORDERING)

2.500 (63.5)

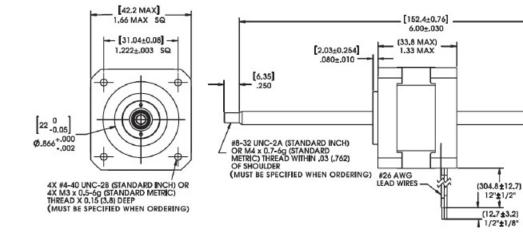
2.78 (70.6)

M3 MOUNTING HOLES AVAILABLE ON REQUEST.

HU	3 OR		EXTE #8-3 OR I THRE SHO	RNAL STOP WII 2 UNC-2A (STA M4 x 0.7-6g (ST. AD TO WITHIN ULDER	NDARD INCH) ANDARD METRIC)	DIMENSION "A" MAX #26 AWG LEAD WIRES	(5.537) Ø.218 TO (6.35),2
	Stroke	Dim. "A"	Dim. "B"	Suffix #	M4x0.7 Thread		ı
	0.500 (12.7)	0.78 (19.8)	0.16 (4.1)	-905	-805		
ĺ	0.750 (19.05)	1.03 (26.2)	0.41 (10.4)	-907	-807		[_(12.7±3.2) 1/2"±1/8"
	1.000 (25.4)	1.28 (32.5)	0.66 (16.8)	-910	-810		.,
ĺ	1.250 (31.8)	1.53 (38.9)	0.91 (23.1)	-912	-812		
ľ	1.500 (38.1)	1.78 (45.2)	1.16 (29.5)	-915	-815		
ĺ	2.00 (50.8)	2.28 (57.9)	1.66 (42.2)	-920	-820		

-925

-825

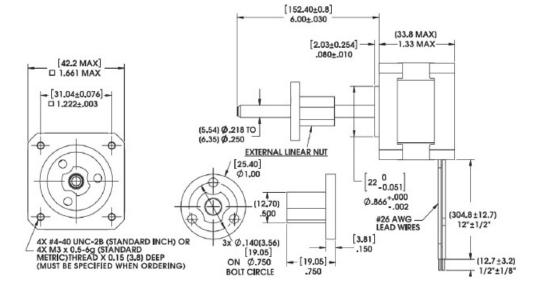

[16,332] [6.731]

Non-Captive Lead Screw

Dimensions = (mm) inches

Integrated connector option available

4-in [101.6 mm] standard screw lengths. Longer screw lengths are available.


2.16 (54.9)

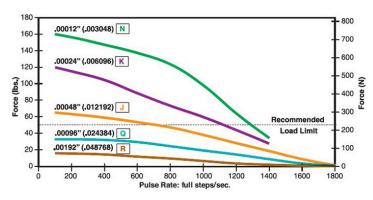
External Linear

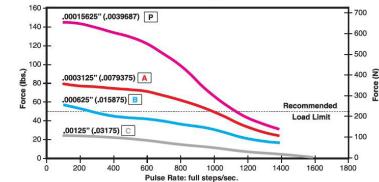
Dimensions = (mm) inches

Integrated connector option available

4-in [101.6 mm] standard screw lengths. Longer screw lengths are available.

108 **Haydon** kerk

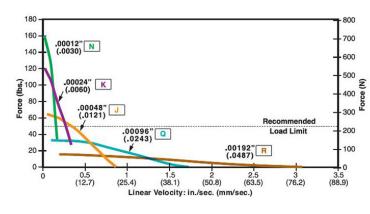

www.haydonkerkpittman.com

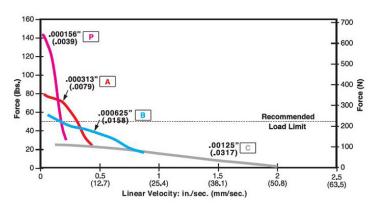

43000 Series • Size 17 Single Stack Stepper Motor Linear Actuators

FORCE vs. PULSE RATE - Chopper - Bipolar - 100% Duty Cycle - 8:1 Motor Coil to Drive Supply Voltage

- Ø .218 (5.54) Lead Screw

- Ø .250 (6.35) Lead Screw





FORCE vs. LINEAR VELOCITY — Chopper — Bipolar — 100% Duty Cycle — 8:1 Motor Coil to Drive Supply Voltage

− Ø .218 (5.54) Lead Screw

- Ø .250 (6.35) Lead Screw

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.

Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.

DIMENSION
"B" MAX
FULLY RETRACTED

TO (6.35).250

(5.54) Ø.218 TO

(6.35) Ø.250

(33.8 MAX)

-1,33 MAX-

[2.03+0.25]

✓ 43000 Series • Size 17 Single Stack Stepper Motor Linear Actuators with Integrated IDEA Drive

Non-Captive Shaft

43000 Series Size 17, 0.9° High Resolution Motor

The Size 17 High Resolution Actuator features a production-proven, patented rotor drive nut that delivers trouble-free, long-term performance.

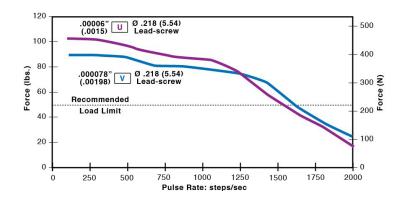
	Size 17: 43 mm (1.7-in) Hybrid Linear Actuator (0.9° Step Angle)					
	Captive	43K4	43K4 – – †			_ t
Part No.	Non-Captive	43J4		Ť	43J4 –	_
	External Linear	E43K	4 – –	t	E43K6 –	- †
	Wiring		Bipolar		Unipo	olar**
Winding Voltage		2.33 VDC	5 VDC	12 VDC	5 VDC	12 VDC
Curren	Current (RMS)/phase		700 mA	290 mA	700 mA	290 mA
Resis	stance/phase	1.56 Ω	7.2 Ω	41.5 Ω	7.2 Ω	41.5 Ω
Induc	ctance/phase	2.6 mH	12 mH	70 mH	6 mH	35 mH
Power	Consumption			7 W		
Ro	otor Inertia	37 gcm ²				
Insu	lation Class	Class B (Class F available)				
	Weight	8.5 oz (241 g)				
Insulat	ion Resistance			20 MΩ		

†Part numbering information on page 111. **Unipolar drive gives approximately 30% less thrust than bipolar drive.

Linear Tra		
Screw Ø .218	Order Code I.D.	
inches	mm	0000 1.5.
.00006	.0015*	U
.00012	.0030*	N
.00024	.0060*	K
.00048	.0121*	J
.00096	.0243*	Q

Linear Tra		
Screw Ø .250	Order Code I.D.	
inches	mm	0000 1151
.000078*	.00198*	V
.00015625	.0039*	Р
.0003125	.0079*	А
.000625	.0158*	В

*Values truncated.


Standard motors are Class B rated for maximum temperature of 130°C.

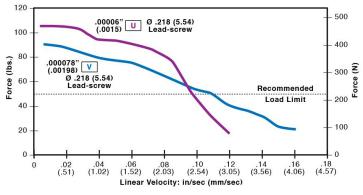
NOTE: Refer to performance curves on previous page for codes N, K, J, Q, P, A, B

Special drive considerations may be necessary when leaving shaft fully extended or fully retracted.

FORCE vs. LINEAR VELOCITY – Chopper – Bipolar – 100% Duty Cycle - 18:1 Motor Coil to Drive Supply Voltage

with two available lead screw diameters

FORCE vs. PULSE RATE – Chopper – Bipolar – 100% Duty Cycle


- 18:1 Motor Coil to Drive Supply Voltage

with two available lead screw diameters

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.

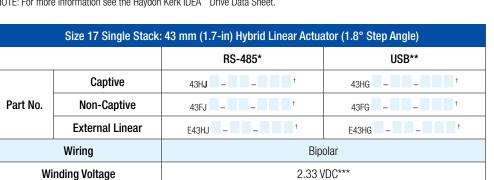
Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.

43000 Series Size 17 Hybrid Linear Actuators with integrated IDEA™ Drive

High performance in a compact package

The 43000 Series Single Stack actuator is available in a wide variety of resolutions – from 0.00006-in (.001524 mm) per step to 0.00192-in (.048768mm) per step. Delivers output force of up to 50 lbs (220N), or speeds exceeding 3 inches (7.62 cm) per second.


43000 Series with IDEA™ Drive features:

- Fully Programmable
- RoHS Compliant
- USB or RS-485 Communication
- Microstepping Capability: Full, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64
- Graphic User Interface
- Auto-population of Drive Parameters
- Programmable Acceleration/Deceleration and Current Control

3 Available Designs

- Captive - Non-Captive - External Linear

NOTE: For more information see the Haydon Kerk IDEA™ Drive Data Sheet.

†Part numbering information on page 113.

*Complementary RS-485 based drive ** USB-based IDEA drive ***Contact Haydon Kerk if a higher voltage motor is desired. Special drive considerations may be necessary when leaving shaft fully extended or fully retracted.

Simple to use IDEA[™] Drive software with on-screen buttons and easy-to-understand programming guides

Software program generates motion profiles directly into the system and also contains a "debug" utility allowing line-by-line execution of a motion program for easy troubleshooting.

Captive Shaft

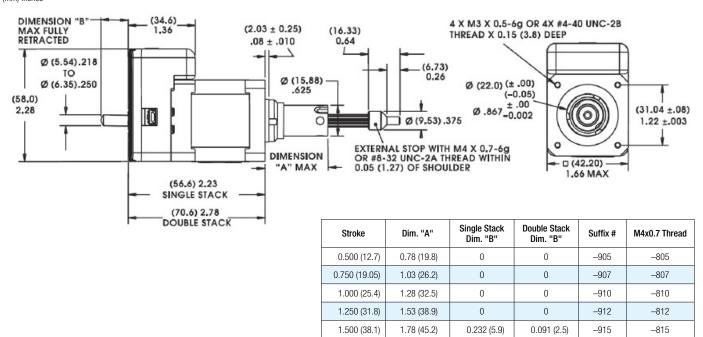
Linear Tra	Order		
Screw Ø .25	Screw Ø .250" (6.35 mm)		
inches mm		Code I.D.	
.00015625	.0039*	Р	
.0003125	.0079*	А	
.000625	.0158*	В	
.00125	.0317*	С	

.0487*

R

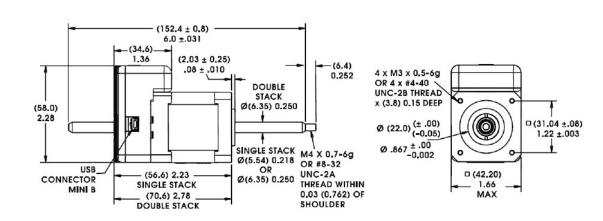
*Values truncated.

.00192



Captive Lead Screw

Dimensions = (mm) inches


2.00 (50.8)

2.500 (63.5)

Non-Captive Lead Screw

Dimensions = (mm) inches

Up to 10-in (254 mm) standard screw lengths. Longer screw lengths are available.

2.28 (57.9)

2.78 (70.6)

0.732 (18.6)

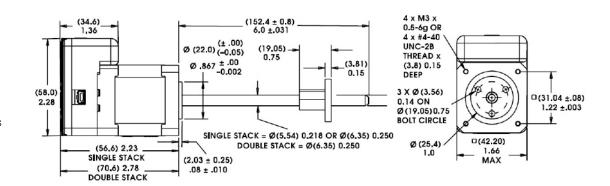
1.232 (31.3)

0.591 (15.0)

1.091 (27.7)

-920

-925


-820

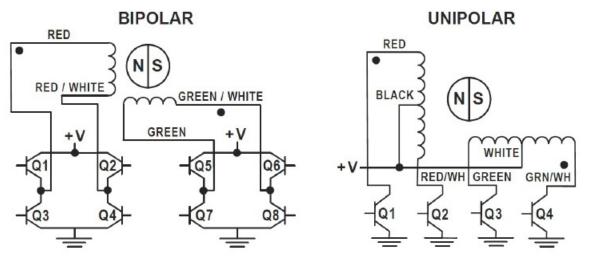
-825

External Linear

Dimensions = (mm) inches

Up to 10-in (254 mm) standard screw lengths. Longer screw lengths are available.

112 **Haydon** kerk


www.haydonkerkpittman.com

Identifying the Hybrid Part Number Codes when Ordering

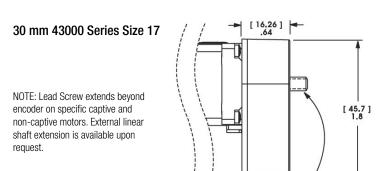
E	43	H	6	N	2.33	910
Prefix	Series Number	Style	Coils	Code ID Resolution	Voltage	Suffix
(include only when	Designation	F = 1.8°	4 = Bipolar	Travel/Step	2.33 = 2.33 VDC	Stroke
using the following)	43 = 43000	Non-captive	(4 wire)	$\mathbf{N} = .00012 - \text{in} (.0030)$	05 = 5 VDC	Example: $-910 = 1$ -in
A = A Coil (See AC)	(Series numbers	$H = 1.8^{\circ}$ Captive or	6 = Unipolar	K = .00024-in (.0060)	12 = 12 VDC	(Refer to Stroke chart on Captive
Synchronous Data Sheet)	represent approximate	External (use "E"	(6 wire)	J = .00048-in (.0121)	Custom V available	motor series product page.)
E = External	width of motor	or "K" Prefix for External version)	$\mathbf{G} = IDEA$	Q = .00096-in (.0243)	ouotom v avanabio	Suffix also represents:
K = External with	body)	$\mathbf{J} = 0.9^{\circ}$	Drive (Size 17, 43000	P = .00015625-in (.0039)		−800 = Metric
40° thread		Non-captive	Series,	A = .0003125-in (.0079)		-900 = External Linear with
form		K = 0.9° Captive or	Bipolar	B = .000625-in (.0158)		grease and flanged nut
P = Proximity		External (use "E"	only)	C = .00125-in (.0317)		-XXX = Proprietary suffix
Sensor		or "K" Prefix for		$\mathbf{R} = .00192 - \text{in } (.0478)$		assigned to a specific customer application. The identifier
S = Home Position		External version)		1100102 111 (.0470)		can apply to either a standard
Switch				High Resolution		or custom part.
				U = .00006-in (.0015)		
				V = .000078-in (.00198)		

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 203 756 7441.

Hybrids: Wiring

Hybrids: Stepping Sequence

	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8	
贝	Step					
EXTEND	1	ON	OFF	ON	0FF	
CW —	2	0FF	ON	ON	0FF	CCW
	3	OFF	ON	OFF	ON	RETRACT
•	4	ON	0FF	0FF	ON	RET
	1	ON	OFF	ON	OFF	


Note: Half stepping is accomplished by inserting an off state between transitioning phases.

Encoders Designed for All Sizes of Hybrid Linear Actuators

All Haydon Hybrid Linear Actuators are available with specifically designed encoders for applications that require feedback. The compact optical incremental encoder design is available with two channel quadrature TTL squarewave outputs. An optional index is also available as a 3rd channel. The Size 17 Encoder provides resolutions for applications that require 200, 400 and 1,000 counts per revolution. Encoders are available for all motor configurations.

Simplicity and low cost make the encoders ideal for both high and low volume motion control applications. The internal monolithic electronic module converts the real-time shaft angle, speed, and direction into TTL compatible outputs. The encoder module incorporates a lensed LED light source and monolithic photodetector array with signal shaping electronics to produce the two channel bounceless TTL outputs.

Differential Ended Encod	er - Pinout - Size 17			
Connector Pin #	Description			
1	Ground			
2	Ground			
3	- Index			
4	+ Index			
5	Channel A –			
6	Channel A +			
7	+5 VDC Power			
8	+5 VDC Power			

Electrical Specifications						
	Minimum	Typical	Maximum	Units		
Input Voltage	4.5	5.0	5.5	VDC		
Output Signals	4.5	5.0	5.5	VDC		

2 channel quadrature TTL squarewave outputs.

Channel B leads A for a clockwise rotation of the rotor viewed from the encoder cover.

Tracks at speeds of 0 to 100,000 cycles/sec.

Optional index available as a 3rd channel (one pulse per revolution).

Operating Temperature		
Size 17	Minimum	Maximum
	- 40°C (- 40°F)	100°C (212°F)

Mechanical Specifications				
	Maximum			
Acceleration	250,000 rad/sec2			
Vibration (5 Hz to 2 kHz)	20 g			

Resolution						
4 Standard Cycles Per Revolution (CPR) or Pulses Per Revolution (PPR)						
Size 17	CPR	200	400	1000*		
3126 17	PPR	800	1600	4000*		

*Index Pulse Channel not available. Contact us for additional resolution options

Single Ended Encoder - Pinout - Size 17					
Connector Pin #	Description	Connector Pin #	Description		
1	Ground	4	+5 VDC Power		
2	Index (optional)	5	Channel B		
3	Channel A				

Integrated Connector for Hybrid Size 17

Hybrid Size 17 linear actuators are available with an integrated connector. Offered alone or with a harness assembly, this connector is RoHS compliant and features a positive latch in order for high connection integrity. The connector is rated up to 3 amps and the mating connector will handle a range of wire gauges from 22 to 28. This motor is ideal for those that want to plug in directly to pre-existing harn

Channel B -

Channel B +

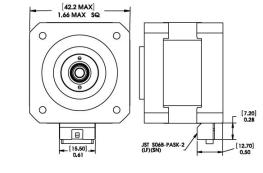
Motor Connector:

JST part # S06B-PASK-2

9

10

Mating Connector:


JST part # PAP-06V-S Haydon Kerk Part #56-1210-5 (12 in. Leads)

Wire to Board Connector:

JST part number SPHD-001T-P0.5

υŀ	plug in directly to pre-existing namesses.					
	Pin#	Bipolar	Unipolar	Color		
	1	Phase 2 Start	Phase 2 Start	G/W		
	2	Open	Phase 2 Common	-		
	3	Phase 2 Finish	Phase 2 Finish	Green		
	4	Phase 1 Finish	Phase 1 Finish	R/W		
	5	Open	Phase 1 Common	-		
	6	Phase 1 Start	Phase 1 Start	Red		

www.haydonkerkpittman.com


43000 Series Double Stack Size 17 Hybrid Linear Actuators

Exceptional performance and new linear motion design opportunities

The 43000 Series is available in a wide variety of resolutions from 0.000625-in (.0158 mm) per step to 0.005-in (.127 mm) per step. The motors can also be microstepped for even finer resolutions. The Size 17 Double Stack actuator delivers thrust of up to 75 lbs. (337 N).

3 Available Designs

- Captive
- Non-Captive
- External Linear

	Size 17 Double Stack: 43 mm (1.7-in) Hybrid Linear Actuator (1.8° Step Angle)					
	Captive		43M4 – – †			
Part No.	Non-Captive		43L4 – – †			
	External Linear		E43M4 – – †			
	Wiring		Bipolar			
Wind	ling Voltage	2.33 VDC	5 VDC	12 VDC		
Current	t (RMS)/phase	2.6 A 1.3 A 550 mA				
Resis	tance/phase	0.9 Ω	3.8 Ω	21.9 Ω		
Induc	tance/phase	1.33 mH	8.21 mH	45.1 mH		
Power	Consumption		13.2 W			
Ro	tor Inertia	78 gcm ²				
Insu	lation Class	Class B (Class F available)				
,	Weight	12.5 oz (352 g)				
Insulati	on Resistance		20 MΩ			

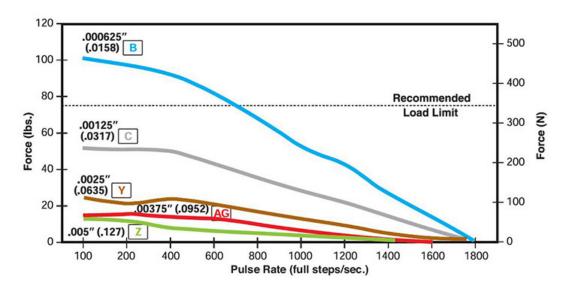
†Part numbering information on page 120.

Linear Tra	Order	
Screw Ø.187	75"(4.76mm)	Code I.D.
inches mm		0000 1121
.000625	.0158*	В
.00125	.0317*	С
.0025	.0635	Υ
.00375	.0953	AG
.005	.127	Z

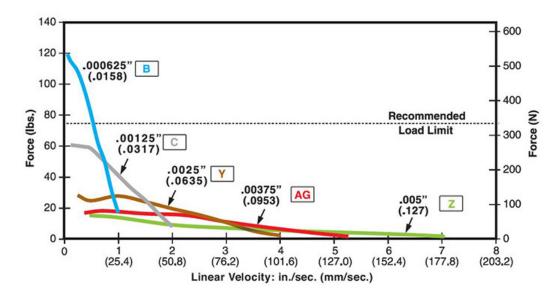
*Values truncated.

Standard motors are Class B rated for maximum temperature of 130°C.

Special drive considerations may be necessary when leaving shaft fully extended or fully retracted.



www.haydonkerkpittman.com

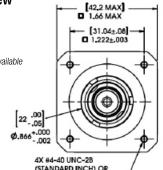

FORCE vs. PULSE RATE - Chopper - Bipolar - 100% Duty Cycle - 8:1 Motor Coil to Drive Supply Voltage

- Ø .250 (6.35) Lead Screw

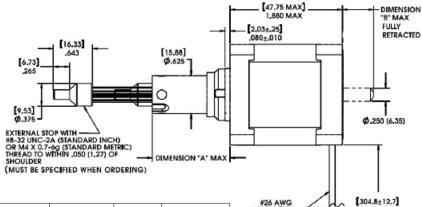
FORCE vs. LINEAR VELOCITY — Chopper — Bipolar — 100% Duty Cycle — 8:1 Motor Coil to Drive Supply Voltage

- Ø .250 (6.35) Lead Screw

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.


Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.


Captive Lead Screw

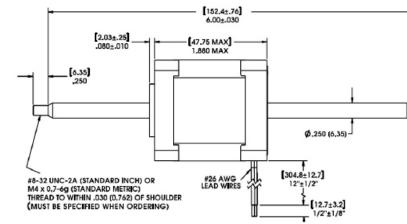
Dimensions = (mm) inches

Integrated connector option available

4X #4-40 UNC-2B (STANDARD INCH) OR 4X M3 x 0.5-6g (STANDARD METRIC) THREAD x 0.15 (3.81) DEEP (MUST BE SPECIFIED WHEN ORDERING)

	Stroke	Dim. "A"	Dim. "B"	Suffix #	M4x0.7 Thread
	0.500 (12.7)	0.78 (19.8)	0.02 (0.51)	-905	-805
	0.750 (19.05)	1.03 (26.2)	0.27 (6.86)	-907	-807
	1.000 (25.4)	1.28 (32.5)	0.52 (13.21)	-910	-810
	1.250 (31.8)	1.53 (38.9)	0.77 (19.56)	-912	-812
	1.500 (38.1)	1.78 (45.2)	1.02 (25.91)	-915	-815
	2.00 (50.8)	2.28 (57.9)	1.52 (38.61)	-920	-820
	2.500 (63.5)	2.78 (70.6)	2.02 (51.31)	-925	-825
_					

Non-Captive Lead Screw


Dimensions = (mm) inches

Integrated connector option available

4-in [101.6 mm] standard screw lengths. Longer screw lengths are available.

[42.2 MAX]


[12.7±3.2] 1/2"±1/8"

[12.7±3.2] 1/2"±1/8"

[47.75 MAX] 1.880 MAX [31±.08] -[1,222±,003 **External Linear** Dimensions = (mm) inches [6.35] Ø.250 Integrated connector option available EXTERNAL LINEAR NUT 4-in [101.6 mm] standard screw lengths. 304.8±12.7 12"±1/2" Longer screw lengths are available. Ø[12.7]

High performance in a compact package

The 43000 Series Double Stack actuator is available in a wide variety of resolutions – from 0.000625-in (.0158 mm) per step to 0.005-in (.127 mm) per step. Delivers output force of up to 75 lbs (337N).

43000 Series with IDEA™ Drive features:

- Fully Programmable
- RoHS Compliant
- USB or RS-485 Communication
- Microstepping Capability: Full, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64
- Graphic User Interface
- Auto-population of Drive Parameters
- Programmable Acceleration/Deceleration and Current Control

3 Available Designs

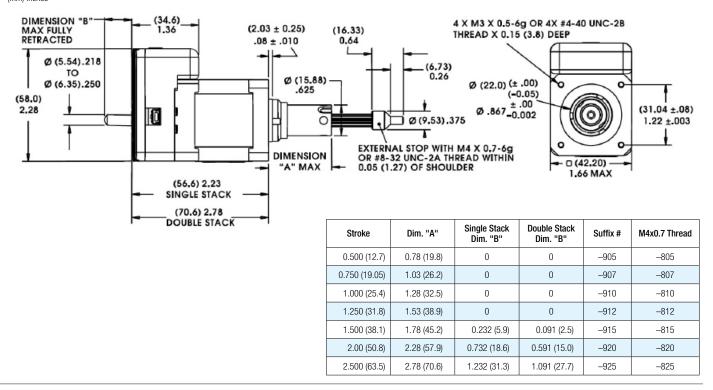
Captive – Non-Captive – External Linear

Size 17 Double Stack: 43 mm (1.7-in) Hybrid Linear Actuator (1.8° Step Angle)				
		RS-485*	USB**	
	Captive	43MJ – – †	43MG – – †	
Part No.	Non-Captive	43LJ – – †	43LG – – †	
	External Linear	E43MJ – – †	E43MG – – †	
Wiring		Bipolar		
Winding Voltage		2.33 V	/DC***	

Linear Tra	Linear Travel / Step		
Screw Ø .250	O" (6.35 mm)	Order Code I.D.	
inches	mm	oodo iibi	
.000625	.0158*	В	
.00125	.0317*	С	
.0025	.0635*	Υ	
.00375	.0953*	AG	
.005	.127*	Z	

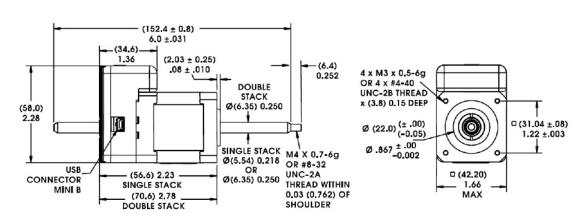
Simple to use IDEA™ Drive software with on-screen buttons and easy-to-understand programming guides

Software program generates motion profiles directly into the system and also contains a "debug" utility allowing line-by-line execution of a motion program for easy troubleshooting.



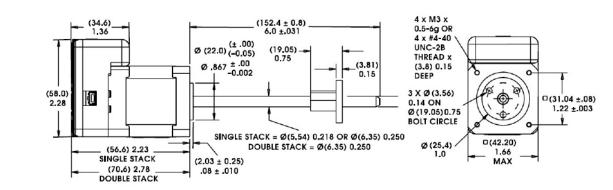
✓ 43000 Series • Size 17 Double Stack Stepper Motor Linear Actuators with Integrated IDEA Drive

Captive Lead Screw


Dimensions = (mm) inches

Non-Captive Lead Screw

 ${\sf Dimensions} = ({\sf mm}) \ {\sf inches}$

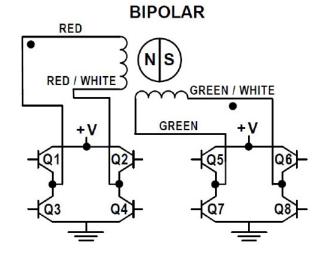

Up to 10-in (254 mm) standard screw lengths. Longer screw lengths are available.

External Linear

Dimensions = (mm) inches

Up to 10-in (254 mm) standard screw lengths. Longer screw lengths are available.

[†]Part numbering information on page 120.


^{*}Comlimentary complementary RS-485 based drive ** USB-based IDEA drive ***Contact Haydon Kerk if a higher voltage motor is desired. Special drive considerations may be necessary when leaving shaft fully extended or fully retracted.

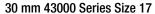
Identifying the Hybrid Part Number Codes when Ordering

E	43	M	G	C	2.33	910
Prefix (include only when using the following) A = A Coil (See AC Synchronous Data Sheet)	Series Number Designation 43 = 43000 (Series numbers represent approximate	Style L = 1.8° Non-captive M = 1.8° Captive or External (use "F" or "K" Prefix	Coils 4 = Bipolar (4 wire) G = IDEA Drive (Size 17, 43000	Code ID Resolution Travel/Step B = .000625-in (.0158) C = .00125-in (.0317) Y = .0025-in (.0635)	Voltage 2.33 = 2.33 VDC 05 = 5 VDC 12 = 12 VDC Custom V available	Suffix Stroke Example: -910 = 1-in (Refer to Stroke chart on Captive motor series product page.)
E = External K = External with 40° thread form	width of motor body)	for External version)	Series, Bipolar only)	AG = .00375-in (.0953) Z = .005-in (.127)		Suffix also represents: -800 = Metric -900 = External Linear with grease and flanged nut
P = Proximity SensorS = Home Position Switch						-XXX = Proprietary suffix assigned to a specific custome application. The identifier can apply to either a standard or custom part.

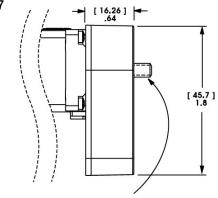
NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 203 756 7441.

Hybrids: Wiring

Hybrids: **Stepping Sequence**


	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8	
贝	Step					A
EXTEND	1	ON	0FF	ON	0FF	
CW-	2	0FF	ON	ON	0FF	CCW
	3	OFF	ON	OFF	ON	RETRACT
•	4	ON	OFF	OFF	ON	Æ
	1	ON	OFF	ON	OFF	

Note: Half stepping is accomplished by inserting an off state between transitioning phases.


Encoders Designed for All Sizes of Hybrid Linear Actuators

All Haydon Hybrid Linear Actuators are available with specifically designed encoders for applications that require feedback. The compact optical incremental encoder design is available with two channel quadrature TTL squarewave outputs. An optional index is also available as a 3rd channel. The Size 17 Encoder provides resolutions for applications that require 200, 400 and 1,000 counts per revolution. Encoders are available for all motor configurations.

Simplicity and low cost make the encoders ideal for both high and low volume motion control applications. The internal monolithic electronic module converts the real-time shaft angle, speed, and direction into TTL compatible outputs. The encoder module incorporates a lensed LED light source and monolithic photodetector array with signal shaping electronics to produce the two channel bounceless TTL outputs.

NOTE: Lead Screw extends beyond encoder on specific captive and non-captive motors. External linear shaft extension is available upon reauest.

Differential Ended Encoder - Pinout - Size 17		
Connector Pin # Description		
1	Ground	
2	Ground	
3	– Index	
4	+ Index	
5	Channel A –	
6	Channel A +	
7	+5 VDC Power	
8	+5 VDC Power	
9	Channel B –	
10	Channel B +	

Electrical Specifications						
	Minimum	Typical	Maximum	Units		
Input Voltage	4.5	5.0	5.5	VDC		
Output Signals	4.5	5.0	5.5	VDC		

2 channel quadrature TTL squarewave outputs.

Channel B leads A for a clockwise rotation of the rotor viewed from the encoder cover.

Tracks at speeds of 0 to 100,000 cycles/sec.

Optional index available as a 3rd channel (one pulse per revolution).

Operating Temperature		
Size 17	Minimum	Maximum
3126 17	- 40°C (- 40°F)	100°C (212°F)

Mechanical Specifications				
	Maximum			
Acceleration	250,000 rad/sec2			
Vibration (5 Hz to 2 kHz)	20 g			

Resolution					
4 Standard Cycles Per Revolution (CPR) or Pulses Per Revolution				PPR)	
Size 17	CPR	200	400	1000*	
3126 17	PPR	800	1600	4000*	

*Index Pulse Channel not available Contact us for additional resolution options

Single Ended Encoder - Pinout - Size 17						
Connector Pin #	Description	Connector Pin #	Description			
1	Ground	4	+5 VDC Power			
2	Index (optional)	5	Channel B			
3	Channel A					

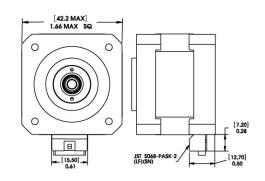
Integrated Connector for Hybrid Size 17

Hybrid Size 17 linear actuators are available with an integrated connector. Offered alone or with a harness assembly, this connector is RoHS compliant and features a positive latch in order for high connection integrity. The connector is rated up to 3 amps and the mating connector will handle a range of wire gauges from 22 to 28. This motor is ideal for those that want to plug in directly to pre-existing harnesses.

Motor Connector:

JST part # S06B-PASK-2

Mating Connector:


JST part # PAP-06V-S

Haydon Kerk Part #56-1210-5 (12 in. Lead

Wire to Board Connector:

JST part number SPHD-001T-P0.5

	to play in an ootly to pro-omoting namedood.					
	Pin#	Bipolar	Unipolar	Color		
	1	Phase 2 Start	Phase 2 Start	G/W		
	2	Open	Phase 2 Common	-		
ds)	3	Phase 2 Finish	Phase 2 Finish	Green		
us)	4	Phase 1 Finish	Phase 1 Finish	R/W		
	5	Open	Phase 1 Common	-		
	6	Phase 1 Start	Phase 1 Start	Red		

30% performance increase compared to standard Size 17

M43000 MAX Series Single Stack Size 17 Max Hybrid Linear Actuators

Our best selling compact hybrid motors, now with 30% performance increase

Top selling designs deliver high performance, opening avenues for equipment designers who previously settled for products with inferior performance and endurance.

3 Available Designs

- Captive
- Non-Captive
- External Linear

The M43000 Max Series is available in a wide variety of resolutions from 0.00006-in. (.001524 mm) per step to 0.00192-in. (.048768 mm) per step, and delivers thrust of up to 50 lbs. (222 N), or speeds exceeding 3 inches (7.62 cm) per second.

	Size 17 Max: 43 mm (1.7-in) Hybrid Linear Actuator (1.8° Step Angle)						
Captive		M43H	4 – –	Ť	M43H6 –		
Part No.	Non-Captive	M43F	4 – –	t	M43F6 –		
	External Linear	EM43F	14 – –	t	EM43H6 -		
\	Wiring		Bipolar		Uni	polar**	
Windi	ing Voltage	2.8 VDC	5.8 VDC	13.8 VDC	5.8 VDC	13.8 VDC	
Current	Current (RMS)/phase		700 mA	290 mA	700 mA	290 mA	
Resista	Resistance/phase		8.3 Ω	47.6 Ω	8.3 Ω	47.6 Ω	
Inductance/phase		2.45 mH	13.5 mH	88.0 mH	6.75 mH	44.0 mH	
Power (Consumption	8 W					
Rote	or Inertia	37.1 gcm ²					
Tempe	Temperature Rise		135° F Rise (70° C Rise)				
Insulation Class		Class B (Class F available)					
V	Veight	9 oz (255 g)					
Insulatio	n Resistance			20 MΩ			

*Part numbering information on page 7. ** Unipolar drive gives approximately 30% less thrust than bipolar drive.

Linear Tra	vel / Step	0.1			
Screw Ø .218	Order Code I.D.				
inches	mm	0000 1151			
.00012	.0030*	N			
.00024	.0060*	K			
.00048	.0121*	J			
.00096	.0243*	Q			
.00192	.0487*	R			

Linear Tra	0.4.	
Screw Ø .250	Order Code I.D.	
inches	mm	Codo IIDI
.00015625	.0039*	Р
.0003125	.0079*	А
.000625	.0158*	В
.00125	.0317*	С

Standard motors are Class B rated for maximum temperature of 130°C. Also available, motors with high temperature capability windings up to 155°C.

Special drive considerations may be necessary when leaving shaft fully extended or fully retracted.

M43000 MAX Series • Size 17 Single Stack Stepper Motor Linear Actuators

[16.332] .643

[6.731]_

EXTERNAL STOP WITH

#8-32 UNC-2A (STANDARD INCH)
OR M4 x 0.7-6g (STANDARD METRIC)
THREAD TO WITHIN .050 (1.27) OF
SHOULDER

(MUST BE SPECIFIED WHEN ORDERING)

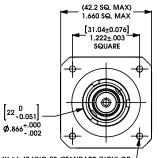
(33.8 MAX)

_ [2.03±0.25]

"A" MAX

(5.537) Ø 218

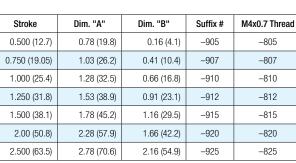
TO (6.35) 250


(304.8±12.7) 12"±1/2"

[12.7±3.2) 1/2"±1/8"

Captive Lead Screw

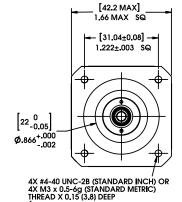
Dimensions = (mm) inches

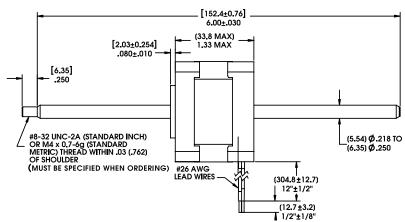

Integrated connector option available

4X #4-40 UNC-2B (STANDARD INCH) OR 4X M3 x 0.5-6g (STANDARD METRIC) THREAD x 0.15 (3.8) DEEP (MUST BE SPECIFIED

M3 MOUNTING HOLES AVAILABLE ON REQUEST.

WHEN ORDERING)

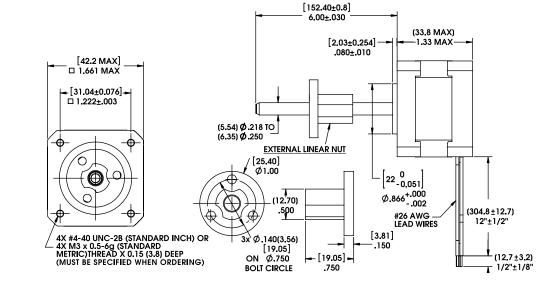



Non-Captive Lead Screw

Dimensions = (mm) inches

Integrated connector option available

4-in [101.6 mm] standard screw lengths. Longer screw lengths are available.

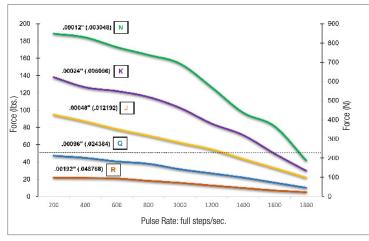


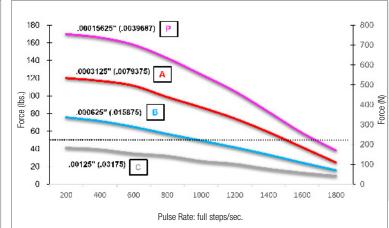
External Linear

Dimensions = (mm) inches

Integrated connector option available

4-in [101.6 mm] standard screw lengths. Longer screw lengths are available.

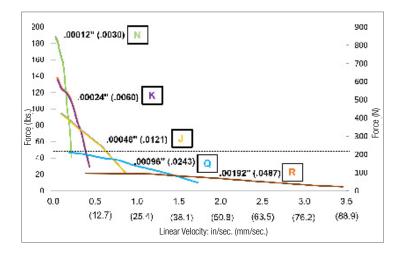

Maydon (kerk)



FORCE vs. PULSE RATE - Chopper - Bipolar - 100% Duty Cycle - 8:1 Motor Coil to Drive Supply Voltage

− Ø .218 (5.54) Lead Screw

- Ø .250 (6.35) Lead Screw



FORCE vs. LINEAR VELOCITY — Chopper — Bipolar — 100% Duty Cycle — 8:1 Motor Coil to Drive Supply Voltage

- Ø .218 (5.54) Lead Screw

NOTE: All chopper drive curves were created with a 5.8 volt, 1/2 microstepping motor and a 40 volt power supply.

Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction

patented rotor drive nut that delivers trouble-free, long-term performance.

M43000 Series

Size 17, 0.9° High Resolution Motor

The Size 17 Max High Resolution Actuator features a production-proven,

Size 17 Max: 43 mm (1.7-in) Hybrid Linear Actuator (0.9° Step Angle)							
	Captive	M43K	4 – –	Ť	M43K6 –		
Part No.	Non-Captive	M43J-	M43J4 – – †			M43J6 – – †	
	External Linear	EM43k	(4 – –	Ť	EM43K6 –	t	
	Wiring		Bipolar		Uniț	Unipolar**	
Winding Voltage		2.8 VDC	5.8 VDC	13.8 VDC	5.8 VDC	13.8 VDC	
Current (RMS)/phase		1.5 A	700 mA	290 mA	700 mA	290 mA	
Resistance/phase		1.77 Ω	8.3 Ω	47.6 Ω	8.3 Ω	47.6 Ω	
Inductance/phase		3.2 mH	17.7 mH	116.2 mH	8.85 mH	58.1.0 mH	
Power	Consumption	8 W					
Ro	otor Inertia			37.1 gcm ²			
Insulation Class B (Class F ava			vailable)				
Weight 9 oz (241 g))			
Insulat	ion Resistance			20 MΩ			

[†]Part numbering information on page 7. **Unipolar drive gives approximately 30% less thrust than bipolar drive.

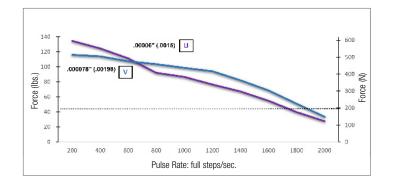
Linear Tra	vel / Step	
Screw Ø .218	3" (5.54 mm)	Order Code I.D.
inches	mm	0000 1.5.
.00006	.0015*	U
.00012	.0030*	N
.00024	.0060*	K
00048	0121*	.l

.0243*

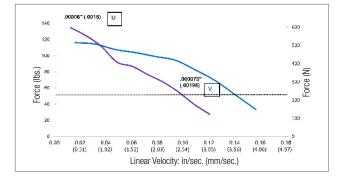
Q

Linear Tra	Order	
inches	Code I.D.	
IIICIICS	mm	
.000078*	.00198*	V
.00015625	.0039*	Р
.0003125	.0079*	А
.000625	.0158*	В

^{*}Values truncated.


.00096

Standard motors are Class B rated for maximum temperature


NOTE: Refer to performance curves on page 3 for codes N, K, J, Q, P, A, B

Special drive considerations may be necessary when leaving shaft fully extended or fully retracted.

FORCE vs. PULSE RATE – Chopper – Bipolar – 100% Duty Cycle - 8:1 Motor Coil to Drive Supply Voltage with two available lead screw diameters

FORCE vs. LINEAR VELOCITY - Chopper - Bipolar - 100% Duty Cycle - 8:1 Motor Coil to Drive Supply Voltage with two available lead screw diameters

NOTE: All chopper drive curves were created with a 5.8 volt, 1/2 microstepping motor and a 40 volt power supply.

Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.

M43000 MAX Series • Size 17 Single Stack Stepper Motor Linear Actuators with Integrated IDEA Drive

M43000 MAX Series Size 17 Hybrid Linear Actuators with integrated IDEA™ Drive

High performance in a compact package

The M43000 Max Series Single Stack actuator is available in a wide variety of resolutions – from 0.00006-in (.001524 mm) per step to 0.00192-in (.048768mm) per step. Delivers output force of up to 50 lbs (220N), or speeds exceeding 3 inches (7.62 cm) per second.

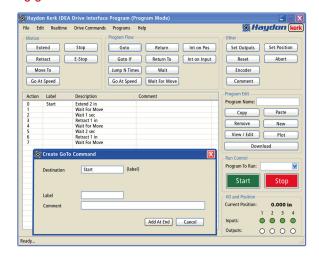
M43000 Max Series with IDEA™ Drive features:

- Fully Programmable
- RoHS Compliant
- USB or RS-485 Communication
- Microstepping Capability: Full, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64
- Graphic User Interface
- Auto-population of Drive Parameters
- Programmable Acceleration/Deceleration and Current Control

3 Available Designs

- Captive - Non-Captive - External Linear

NOTE: For more information see the Haydon Kerk IDEA™ Drive Data Sheet.



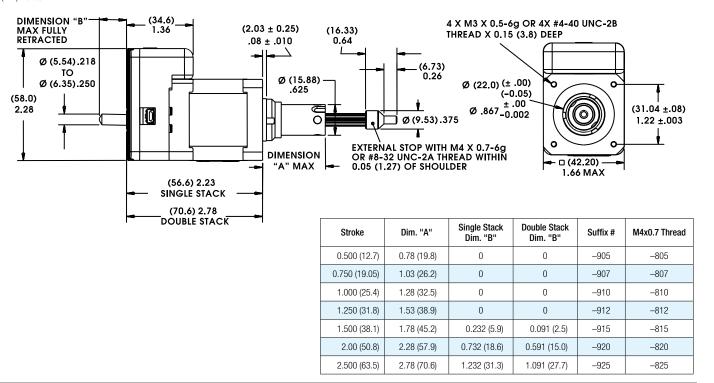
Size 17 Single Stack Max: 43 mm (1.7-in) Hybrid Linear Actuator (1.8° Step Angle)						
	Captive	м43HG — — †				
Part No.	Non-Captive	M43FG †				
	External Linear	EM43HG – – †				
Wiring		Bipolar				
Winding Voltage		2.8 VDC**				

Part numbering information on page 7. **Contact Haydon Kerk if a higher voltage motor is desired. Special drive considerations may be necessary when leaving shaft fully extended or fully retracted.

Simple to use IDEA[™] Drive software with on-screen buttons and easy-to-understand programming guides

Software program generates motion profiles directly into the system and also contains a "debug" utility allowing line-by-line execution of a motion program for easy troubleshooting.

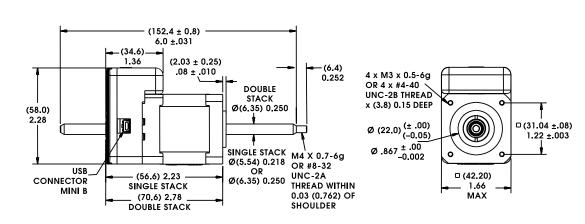
Linear Tra	vel / Step	
Screw Ø .218	8" (5.54 mm)	Order Code I.D.
inches	mm	0000 1121
.00012	.0030*	N
.00024	.0060*	K
.00048	.0121*	J
.00096	.0243*	Q
.00192	.0487*	R


Linear Tra	0.4.		
Screw Ø .250	Order Code I.D.		
inches	mm	GOUG I.D.	
.00015625	.0039*	Р	
.0003125	.0079*	А	
.000625	.0158*	В	
.00125	.0317*	С	

*Values truncated.

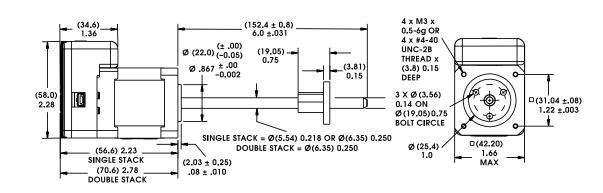
M43000 MAX Series • Size 17 Single Stack Stepper Motor Linear Actuators with Integrated IDEA Drive

Captive Lead Screw


Dimensions = (mm) inches

Non-Captive Lead Screw

Dimensions = (mm) inches


Up to 10-in (254 mm) standard screw lengths. Longer screw lengths are available.

External Linear

 ${\sf Dimensions} = ({\sf mm}) \ {\sf inches}$

Up to 10-in (254 mm) standard screw lengths. Longer screw lengths are available.

Encoders Designed for All Sizes of Hybrid Linear Actuators

All Haydon Hybrid Linear Actuators are available with specifically designed encoders for applications that require feedback. The compact optical incremental encoder design is available with two channel quadrature TTL squarewave outputs. An optional index is also available as a 3rd channel. The Size 17 Encoder provides resolutions for applications that require 200, 400 and 1,000 counts per revolution. Encoders are available for all motor configurations.

Simplicity and low cost make the encoders ideal for both high and low volume motion control applications. The internal monolithic electronic module converts the real-time shaft angle, speed, and direction into TTL compatible outputs. The encoder module incorporates a lensed LED light source and monolithic photodetector array with signal shaping electronics to produce the two channel bounceless TTL outputs.

30 mm M43000 Series Size 17	/ / →	[16.26] .64	 -	
NOTE: Lead Screw extends beyond encoder on specific captive and non-captive motors. External linear shaft extension is available upon request.				[45.7] 1.8

Differential Ended Encoder - Pinout - Size 17				
Connector Pin #	Description			
1	Ground			
2	Ground			
3	– Index			
4	+ Index			
5	Channel A –			
6	Channel A +			
7	+5 VDC Power			
8	+5 VDC Power			
9	Channel B –			
10	Channel B +			

Electrical Specifications						
	Minimum	Typical	Maximum	Units		
Input Voltage	4.5	5.0	5.5	VDC		
Output Signals	4.5	5.0	5.5	VDC		

2 channel quadrature TTL squarewave outputs.

Channel B leads A for a clockwise rotation of the rotor viewed from the encoder cover.

Tracks at speeds of 0 to 100,000 cycles/sec.

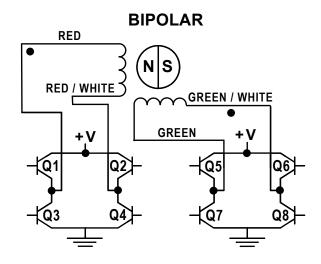
Optional index available as a 3rd channel (one pulse per revolution).

Operating Temperature		
Size 17	Minimum	Maximum
	- 40°C (- 40°F)	100°C (212°F)

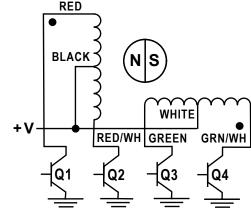
Mechanical Specifications				
	Maximum			
Acceleration	250,000 rad/sec2			
Vibration (5 Hz to 2 kHz)	20 g			

Resolution						
4 Standard Cycles Per Revolution (CPR) or Pulses Per Revolution (PPR)						
Size 17	400	1000*				
3126 17	PPR	800	1600	4000*		

*Index Pulse Channel not available.


Single Ended Encoder - Pinout - Size 17						
Connector Pin # Description Connector Pin # Description						
1	Ground	4	+5 VDC Power			
2	Index (optional)	5	Channel B			
3	Channel A					

Identifying the Hybrid Part Number Codes when Ordering


Е	M43	Н	G	N	2.8	910
Prefix	Series Number	Style	Coils	Code ID Resolution	Voltage	Suffix
(include only when	Designation	F = 1.8°	4 = Bipolar	Travel/Step	2.8 = 2.8 VDC	Stroke
using the following)	M43 = 43000	Non-captive	(4 wire)	$\mathbf{N} = .00012 \text{-in} (.0030)$	5.8 = 5.8 VDC	Example: $-910 = 1$ -in
A = A Coil (See AC)	Max Series	$\mathbf{H} = 1.8^{\circ}$ Captive or	6 = Unipolar	K = .00024-in (.0060)	13.8 = 13.8 VDC	(Refer to Stroke chart on Captive
Synchronous Data Sheet)	(Series numbers represent	External (use "E"	(6 wire)	J = .00048-in (.0121)	Custom V available	motor series product page.)
E = External	approximate	or "K" Prefix for External version)	$\mathbf{G} = IDEA$	Q = .00096-in (.0243)		Suffix also represents:
$\mathbf{K} = \text{External with}$	width of motor	$\mathbf{J} = 0.9^{\circ}$	Drive (Size 17, 43000	P = .00015625-in (.0039)		-800 = Metric
40° thread	body)	Non-captive	Series,	A = .0003125-in (.0079)		-900 = External Linear with
form		$\mathbf{K} = 0.9^{\circ}$ Captive or	Bipolar	B = .000625-in (.0158)		grease and flanged nut
P = Proximity		External (use "E"	only)	C = .00125-in (.0317)		-XXX = Proprietary suffix
Sensor		or "K" Prefix for		$\mathbf{R} = .00192 \cdot \text{in} (.0478)$		assigned to a specific customer application. The identifier
S = Home Position		External version)		n = .00192-111 (.0470)		can apply to either a standard
Switch				High Resolution		or custom part.
				U = .00006-in (.0015)		
				V = .000078-in (.00198)		

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 203 756 7441.

Hybrids: Wiring

UNIPOLAR

Hybrids: **Stepping Sequence**

	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8	
贝	Step					
EXTEND CW	1	ON	OFF	ON	0FF	İ
QV —	2	0FF	ON	ON	OFF	CCW
1	3	OFF	ON	OFF	ON	RETRACT
•	4	ON	0FF	OFF	ON	RETI
	1	ON	0FF	ON	0FF	

Note: Half stepping is accomplished by inserting an off state between transitioning phases.

Integrated Connectors

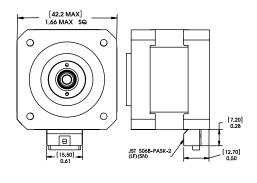
Hybrid Size 17 Max linear actuators are available with an integrated connector. Offered alone or with a harness assembly, this connector is RoHS compliant and features a positive latch in order for high connection integrity. The connector is rated up to 3 amps and the mating connector will handle a range of wire gauges from 22 to 28. This motor is ideal for those that want to plug in directly to pre-existing harnesses.

Motor Connector:

JST part # S06B-PASK-2

Mating Connector:

JST part # PAP-06V-S


Havdon Kerk Part #56-1210-5 (12 in. Leads)

Wire to Board Connector:

JST part number SPHD-001T-P0.5

,	to play in amount to pro-smoonly mannesses.					
	Pin#	Bipolar	Unipolar	Color		
	1	Phase 2 Start	Phase 2 Start	G/W		
	2	Open	Phase 2 Common	-		
s)	3	Phase 2 Finish	Phase 2 Finish	Green		
3)	4	Phase 1 Finish	Phase 1 Finish	R/W		
	5	Open	Phase 1 Common	-		
	6	Phase 1 Start	Phase 1 Start	Red		

www.havdonkerkpittman.com

M43000 MAX Series Double Stack Size 17 Hybrid Linear Actuators

Exceptional performance and new linear motion design opportunities, now with 30% performance increase

The M43000 Max Series is available in a wide variety of resolutions from 0.000625-in (.0158 mm) per step to 0.005-in (.127 mm) per step. The motors can also be microstepped for even finer resolutions. The Size 17 Double Stack actuator delivers thrust of up to 75 lbs.

3 Available Designs

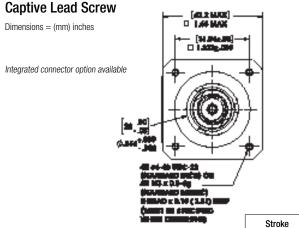
- Captive
- Non-Captive
- External Linear

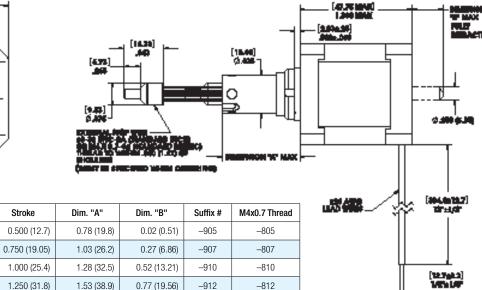
Siz	Size 17 Max Double Stack Max: 43 mm (1.7-in) Hybrid Linear Actuator (1.8° Step Angle)						
	Captive	M43M4 – – †					
Part No.	Non-Captive	M43L4 – – †					
	External Linear	1	EM43M4 – –	t			
	Wiring		Bipolar				
Wind	ding Voltage	2.8 VDC	5.8 VDC	13.8 VDC			
Curren	Current (RMS)/phase 2.6 A		1.3 A	550 mA			
Resis	stance/phase	1.1 Ω	4.5 Ω	25 Ω			
Induc	ctance/phase	2.4 mH 10.5 mH 52 mH					
Power	Consumption		15 W				
Ro	otor Inertia		78.2 gcm ²				
Temp	perature Rise	135° F Rise (70° C Rise)					
Insulation Class B (Class F availa			Class B (Class F available)				
	Weight	14 oz (400 g)					
Insulat	ion Resistance		20 MΩ				

	Linear Travel / Step Screw Ø.1875"(4.76mm)		
inches	mm	Code I.D.	
.000625	.0158*	В	
.00125	.0317*	С	
.0025	.0635	Y	
.00375 .0953		AG	
.005 .127		Z	

*Values truncated.

Standard motors are Class B rated for maximum temperature of 130°C.

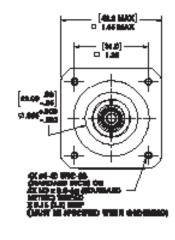

Special drive considerations may be necessary when leaving shaft fully extended or fully retracted.


†Part numbering information on page 6.

■ M43000 MAX Series • Size 17 Double Stack Stepper Motor Linear Actuators

-815

-820


-825

Non-Captive Lead Screw

Dimensions = (mm) inches

Integrated connector option available

4-in [101.6 mm] standard screw lengths. Longer screw lengths are available.

1.500 (38.1)

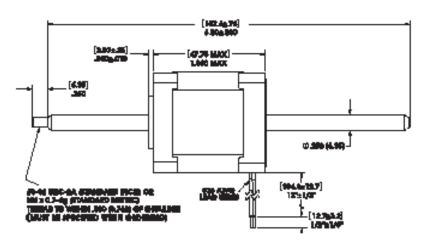
2.00 (50.8)

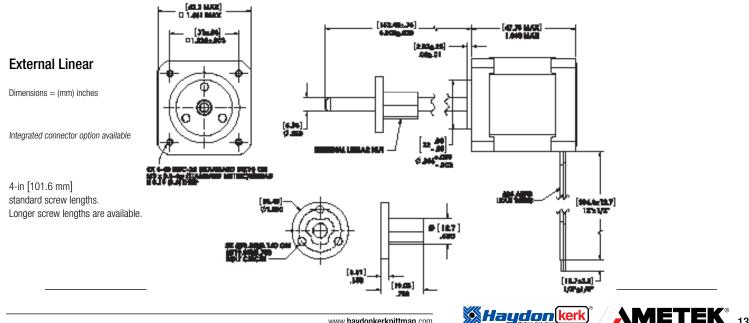
2.500 (63.5)

1.78 (45.2)

2.28 (57.9)

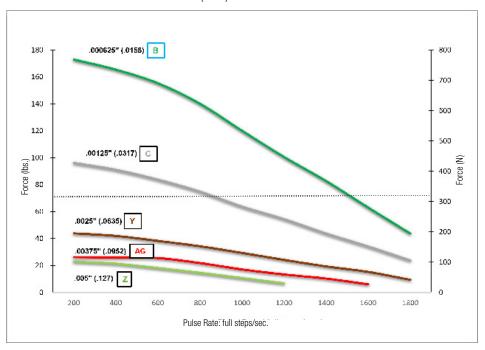
2.78 (70.6)

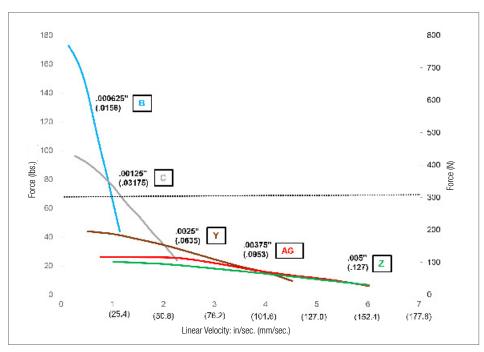

1.02 (25.91)


1.52 (38.61)

2.02 (51.31)

-915


-920



FORCE vs. PULSE RATE - Chopper - Bipolar - 100% Duty Cycle - 8:1 Motor Coil to Drive Supply Voltage

- Ø .250 (6.35) Lead Screw

FORCE vs. LINEAR VELOCITY — Chopper — Bipolar — 100% Duty Cycle — 8:1 Motor Coil to Drive Supply Voltage

NOTE: All chopper drive curves were created with a 5.8 volt, microstepping motor and a 40 volt power supply.

Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.

43000 Max Series Size 17 Double Stack Hybrid Linear Actuators with integrated IDEA™ Drive

High performance in a compact package

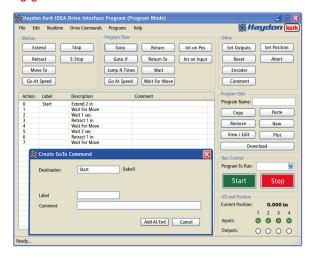
The M43000 Max Series Double Stack actuator is available in a wide variety of resolutions – from 0.000625-in (.0158 mm) per step to 0.005-in (.127 mm) per step. Delivers output force of up to 75 lbs

43000 Series with IDEA™ Drive features:

- Fully Programmable
- RoHS Compliant
- USB or RS-485 Communication
- Microstepping Capability: Full, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64
- Graphic User Interface
- Auto-population of Drive Parameters
- Programmable Acceleration/Deceleration and Current Control

3 Available Designs

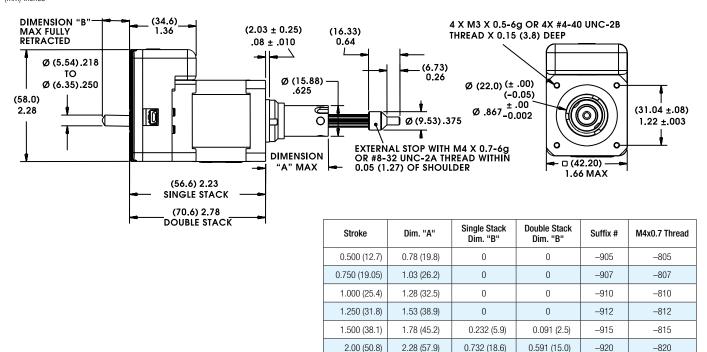
- Captive - Non-Captive - External Linear



	Size 17 Max Double Stack: 43 mm (1.7-in) Hybrid Linear Actuator (1.8° Step Angle)					
	Captive	M43MG – – †				
Part No.	Non-Captive	M43LG – – †				
	External Linear	EM43MG – – †				
	Wiring	Bipolar				
Winding Voltage		2.8 VDC**				

Linear Tra		
Screw Ø .250	Order Code I.D.	
inches	mm	0000 1.2.
.000625	.000625 .0158*	
.00125	.00125 .0317*	
.0025	.0025 .0635*	
.00375	.00375 .0953*	
.005	.127*	Z

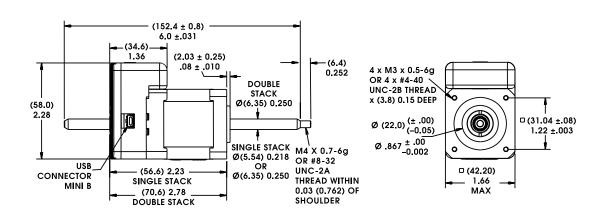
Simple to use IDEA[™] Drive software with on-screen buttons and easy-to-understand programming guides


Software program generates motion profiles directly into the system and also contains a "debug" utility allowing lineby-line execution of a motion program for easy troubleshooting.

^TPart numbering information on page 7. **Contact Haydon Kerk if a higher voltage motor is desired. Special drive considerations may be necessary when leaving shaft fully extended or fully retracted.

Captive Lead Screw

Dimensions = (mm) inches



2.500 (63.5)

Non-Captive Lead Screw

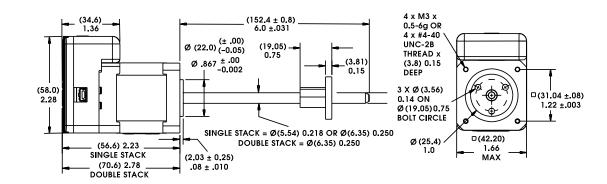
Dimensions = (mm) inches

Up to 10-in (254 mm) standard screw lengths. Longer screw lengths are available.

2.78 (70.6)

1.232 (31.3)

1.091 (27.7)


-925

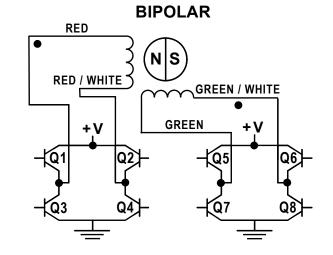
-825

External Linear

Dimensions = (mm) inches

Up to 10-in (254 mm) standard screw lengths. Longer screw lengths are available.

www.haydonkerkpittman.com


M43000 MAX Series • Size 17 Double Stack Stepper Motor Linear Actuators with Integrated IDEA Drive

Identifying the Hybrid Part Number Codes when Ordering

Е	M43	M	G	C	2.8	910
Prefix (include only when using the following) A = A Coil (See AC Synchronous Data Sheet)	Series Number Designation M43 = 43000 Max Series (Series numbers represent approximate	Style L = 1.8° Non-captive M = 1.8° Captive or External (use "E" or "K" Prefix	Coils 4 = Bipolar (4 wire) G = IDEA Drive (Size 17, 43000	Code ID Resolution Travel/Step B = .000625-in (.0158) C = .00125-in (.0317) Y = .0025-in (.0635) AG = .00375-in (.0953)	Voltage 2.8 = 2.8 VDC 5.8 = 5.8 VDC 13.8 = 13.8 VDC Custom V available	Suffix Stroke Example: -910 = 1-in (Refer to Stroke chart on Captive motor series product page.) Suffix also represents:
 E = External K = External with 40° thread form P = Proximity Sensor S = Home Position Switch 	width of motor body)	for External version)	Series, Bipolar only)	Z = .005-in (.127)		-800 = Metric -900 = External Linear with grease and flanged nut -XXX = Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

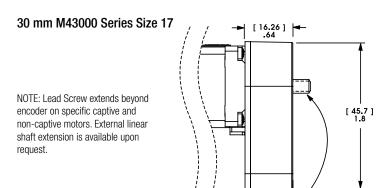
NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 203 756 7441.

Hybrids: Wiring

Hybrids: **Stepping Sequence**

異	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8
	Step				
EXTEND CW	1	ON	0FF	ON	0FF
CW —	2	0FF	ON	ON	0FF
	3	OFF	ON	OFF	ON
	4	ON	OFF	OFF	ON
	1	ON	OFF	ON	OFF

Note: Half stepping is accomplished by inserting an off state between transitioning phases.



■ M43000 MAX Series • Size 17 DS Stepper Motor Linear Actuators w/ Integrated IDEA Drive (Encoder-only Specifications)

Encoders Designed for All Sizes of Hybrid Linear Actuators

All Haydon Hybrid Linear Actuators are available with specifically designed encoders for applications that require feedback. The compact optical incremental encoder design is available with two channel quadrature TTL squarewave outputs. An optional index is also available as a 3rd channel. The Size 17 Encoder provides resolutions for applications that require 200, 400 and 1,000 counts per revolution. Encoders are available for all motor configurations.

Simplicity and low cost make the encoders ideal for both high and low volume motion control applications. The internal monolithic electronic module converts the real-time shaft angle, speed, and direction into TTL compatible outputs. The encoder module incorporates a lensed LED light source and monolithic photodetector array with signal shaping electronics to produce the two channel bounceless TTL outputs.

Differential Ended Encoder - Pinout - Size 17				
Connector Pin #	Description			
1	Ground			
2	Ground			
3	– Index			
4	+ Index			
5	Channel A –			
6	Channel A +			
7	+5 VDC Power			
8	+5 VDC Power			
9	Channel B –			
10	Channel B +			

Electrical Specifications								
Minimum Typical Maximum Units								
Input Voltage	4.5	5.0	5.5	VDC				
Output Signals	4.5	5.0	5.5	VDC				

- 2 channel quadrature TTL squarewave outputs.
- Channel B leads A for a clockwise rotation of the rotor viewed from the encoder cover.
- Tracks at speeds of 0 to 100,000 cycles/sec.
- Optional index available as a 3rd channel (one pulse per revolution).

Operating Temperature		
Size 17	Minimum	Maximum
	- 40°C (- 40°F)	100°C (212°F)

Mechanical Specifications					
	Maximum				
Acceleration	250,000 rad/sec2				
Vibration (5 Hz to 2 kHz)	20 g				

Resolution								
4 Standard Cycles Per Revolution (CPR) or Pulses Per Revolution (PPR)								
Size 17	CPR	200	400	1000*				
SIZE 17	PPR	800	1600	4000*				

*Index Pulse Channel not available.

Single Ended Encoder - Pinout - Size 17							
Connector Pin #	Description	Connector Pin #	Description				
1	Ground	4	+5 VDC Power				
2	Index (optional)	5	Channel B				
3	Channel A						

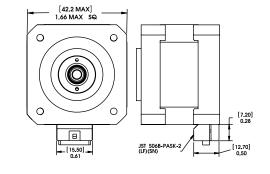
Integrated Connectors

Hybrid Size 17 Max linear actuators are available with an integrated connector. Offered alone or with a harness assembly, this connector is RoHS compliant and features a positive latch in order for high connection integrity. The connector is rated up to 3 amps and the mating connector will handle a range of wire gauges from 22 to 28. This motor is ideal for those that want to plug in directly to pre-existing harnesses

Motor Connector:

JST part # S06B-PASK-2

Mating Connector:


JST part # PAP-06V-S

Haydon Kerk Part #56-1210-5 (12 in. Leads)

Wire to Board Connector:

JST part number SPHD-001T-P0.5

oldy in directly to pre-existing namesses.						
Pin #	Bipolar	Unipolar	Color			
1	Phase 2 Start	Phase 2 Start	G/W			
2	Open	Phase 2 Common	_			
3	Phase 2 Finish	Phase 2 Finish	Green			
4	Phase 1 Finish	Phase 1 Finish	R/W			
5	Open	Phase 1 Common	-			
6	Phase 1 Start	Phase 1 Start	Red			

57000 Series Size 23 Hybrid Linear Actuators

For applications that require forces up to 200 lbs. (890 N).

Size 23 incorporates the same high performance and durable design as the Size 17.

3 Available Designs

- Captive
- Non-Captive
- External Linear

The 57000 Series Hybrid Linear Actuator is available in a wide variety of resolutions, from 0.0003125-in. (.0079375 mm) per step to 0.002-in. (.0508 mm) per step. They deliver a thrust of up to 200 lbs. (890 N) or speeds exceeding 2.0-in. (5.08 cm) per second.

Size 23: 57 mm (2.3-in) Hybrid Linear Actuator (1.8° Step Angle)							
	Captive	57H4 – – †			57H6 – – †		
Part No.	Non-Captive	57F4		Ť	57F4 –	_ †	
	External Linear	E57H4	4 – –	t	E57H6 – – †		
Wiring		Bipolar			Unipolar**		
Wind	ling Voltage	3.25 VDC 5 VDC 12 VDC		12 VDC	5 VDC	12 VDC	
Current (RMS)/phase		2.0 A	1.3 A	.54 A	1.3 A	.54 A	
Resistance/phase		1.63 Ω	3.85 Ω	22.2 Ω	3.85 Ω	22.2 Ω	
Induc	tance/phase	3.5 mH	10.5 mH	58 mH	5.3 mH	23.6 mH	
Power	Consumption	13 W					
Ro	tor Inertia	166 gcm ²					
Insu	lation Class	Class B (Class F available)					
	Weight	18 oz (511 g)					
Insulati	on Resistance			20 MΩ			

Ziilodi iio	Order	
Screw Ø .37	Code I.D.	
inches	mm	Oodo IIDI
.0003125	.0079*	А
.0004167	.0105*	S
.0005	.0127	3
.0008333	.0211*	Т
.001	.0254	1
.002	.0508	2

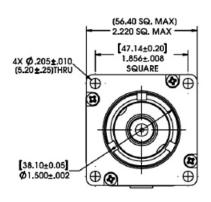
Linear Travel / Step

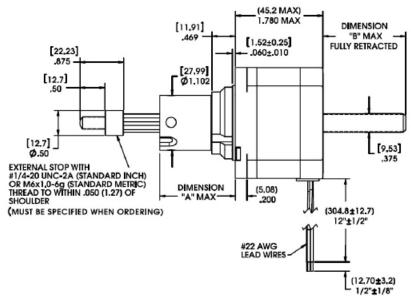
*Values truncated

Standard motors are Class B rated for maximum temperature of 130°C.

Special drive considerations may be necessary when leaving shaft fully extended or fully retracted.

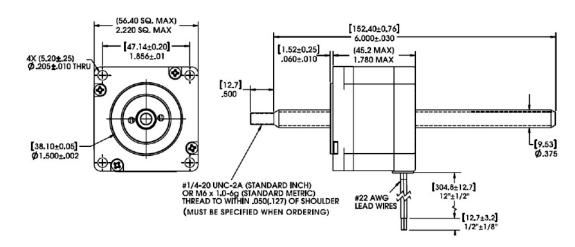
†Part numbering information on page 126. ** Unipolar drive gives approximately 30% less thrust than bipolar drive.





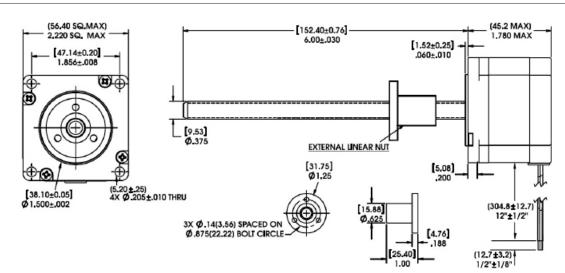
Captive Lead Screw

Dimensions = (mm) inches


Stroke	Dim. "A"	Dim. "B"	Suffix #	M6x1.0 thread
0.500 (12.7)	1.01 (25.7)	0.06 (1.5)	-905	-805
0.750 (19.05)	1.26 (32.0)	0.31 (7.9)	-907	-807
1.000 (25.4)	1.51 (38.4)	0.56 (14.2)	-910	-810
1.250 (31.8)	1.76 (44.7)	0.81 (20.6)	-912	-812
1.500 (38.1)	2.01 (51.1)	1.06 (26.9)	-915	-815
2.00 (50.8)	2.51 (63.8)	1.56 (39.6)	-920	-820
2.500 (63.5)	3.01 (76.5)	2.06 (52.3)	-925	-825

Non-Captive Lead Screw

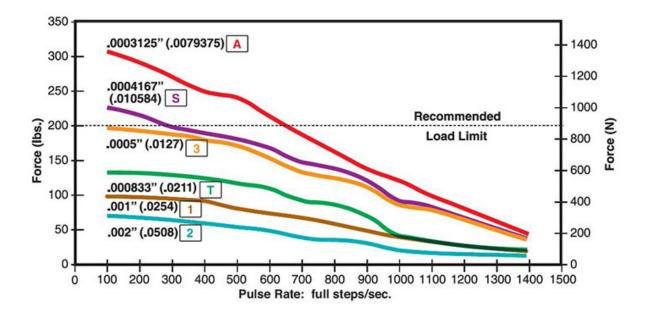
Dimensions = (mm) inches


Up to 10-in (254 mm) standard screw lengths. Longer screw lengths are available.

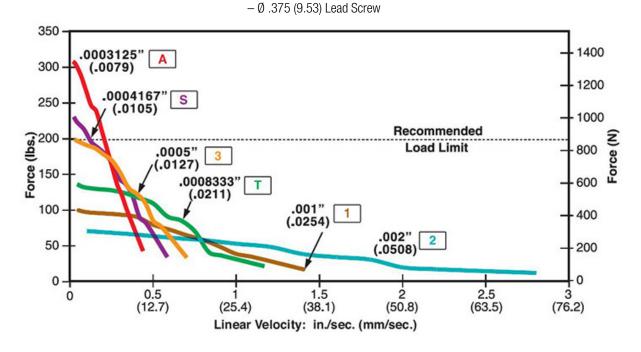
External Linear

Dimensions = (mm) inches

Up to 12-in (305 mm) standard screw lengths. Longer screw lengths are available.



138 **Haydon** (kerk)



www.haydonkerkpittman.com

FORCE vs. PULSE RATE – Chopper – Bipolar – 100% Duty Cycle − Ø .375 (9.53) Lead Screw

FORCE vs. LINEAR VELOCITY – Chopper – Bipolar – 100% Duty Cycle

NOTE: All chopper drive curves were created with a 5 volt motor and a 75 volt power supply.

Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.

57000 Series Size 23, 0.9° High Resolution Motor

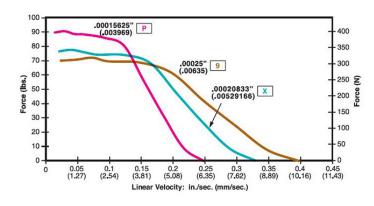
The Size 23, 0.9° high resolution hybrid offers precise, excellent motion control with a full linear step movement as low as 2 microns and a thrust capability up to 200 lbs (890 N).

	Size 23: 57 mm (2.3-in) Hybrid Linear Actuator (0.9° Step Angle)						
	Captive	57K4 - - †			57K6 – – †		
Part No.	Non-Captive	57J4 – – †			57J6 –	_ †	
	External Linear	E57K4 – – †			E57K6 – – †		
Wiring		Bipolar			Unip	Unipolar**	
Wind	ling Voltage	3.25 VDC 5 VDC 12 VDC		5 VDC	12 VDC		
Curren	Current (RMS)/phase		1.3 A	0.54 A	1.3 A	0.54 A	
Resis	Resistance/phase		3.85Ω	22.2 Ω	3.85 Ω	22.2 Ω	
Induc	tance/phase	4.2 mH	13 mH	68 mH	6 mH	27 mH	
Power	Consumption	13 W					
Ro	tor Inertia	166 gcm ²					
Insulation Class		Class B (Class F available)					
	Weight	18 oz (511 g)					
Insulati	on Resistance			20 MΩ			

Linear Tra	Linear Travel / Step		
Screw Ø .250	O" (6.35 mm)	Order Code I.D.	
inches	mm	00d0 I.D.	
.000125	.0031*	7	
.00015625	.003969	Р	
.00020833	.00529166	Х	
.00025	.00635	9	
.0004167	.01058418	S	
.0005	.0127	3	
.001	.0254	1	

*Values truncated.

NOTE: Refer to performance curves on previous page for codes S, 3, 1.


Special drive considerations may be necessary when leaving shaft fully extended or fully retracted.

†Part numbering information on page 126. **Unipolar drive gives approximately 30% less thrust than bipolar drive.

FORCE vs. PULSE RATE – Chopper – Bipolar – 100% Duty Cycle with two available lead screw diameters

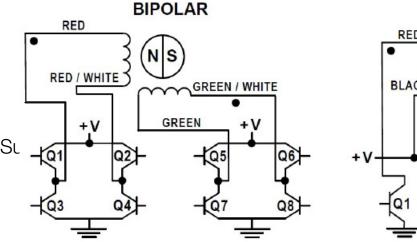
FORCE vs. LINEAR VELOCITY — Chopper — Bipolar — 100% Duty Cycle with two available lead screw diameters

NOTE: All chopper drive curves were created with a 5 volt motor and a 75 volt power supply.

Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.

140 **Haydon kerk** kerk



Identifying the Hybrid Part Number Codes when Ordering

Е	57	Н	6	7	3.25	910
Prefix (include only when using the following) A = A Coil (See AC Synchronous Data Sheet) E = External K = External with 40° thread form P = Proximity Sensor S = Home Position Switch	Series Number Designation 57 = 57000 (Series numbers represent approximate width of motor body)	Style F = 1.8° Non-captive H = 1.8° Captive or External (use "E" or "K" Prefix for External version) J = 0.9° Non-captive K = 0.9° Captive or External (use "E" or "K" Prefix for External version)	Coils 4 = Bipolar (4 wire) 6 = Unipolar (6 wire)	Code ID Resolution Travel/Step 7 = .000125-in (.0031) S = .0004167-in	Voltage 3.25 = 3.25 VDC 05 = 5 VDC 12 = 12 VDC Custom V available	Suffix Stroke Example: -910 = 1-in (Refer to Stroke chart on Captive motor series product page.) Suffix also represents: -800 = Metric -900 = External Linear with grease and flanged nut -XXX = Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 203 756 7441.

Hybrids: Wiring

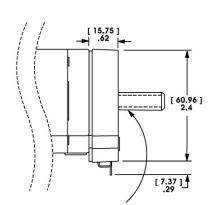
BLACK NS WHITE RED/WH GREEN GRN/WH Q1 Q2 Q3 Q4

UNIPOLAR

Hybrids: Stepping Sequence

	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8	
E	Step					
EXTEND	1	ON	0FF	ON	0FF	
CW-	2	OFF	ON	ON	OFF	CCW
1	3	OFF	ON	OFF	ON	RETRACT
•	4	ON	OFF	OFF	ON	RET
	1	ON	OFF	ON	OFF	

Note: Half stepping is accomplished by inserting an off state between transitioning phases.


Encoders Designed for All Sizes of Hybrid Linear Actuators

All Haydon Hybrid Linear Actuators are available with specifically designed encoders for applications that require feedback. The compact optical incremental encoder design is available with two channel quadrature TTL squarewave outputs. An optional index is also available as a 3rd channel. The Size 23 encoder is offered in resolutions of 200, 400, 1,000 and 2,000 counts per revolution. Encoders are available for all motor configurations: captive, non-captive and external linear.

Simplicity and low cost make the encoders ideal for both high and low volume motion control applications. The internal monolithic electronic module converts the real-time shaft angle, speed, and direction into TTL compatible outputs. The encoder module incorporates a lensed LED light source and monolithic photodetector array with signal shaping electronics to produce the two channel bounceless TTL outputs.

57 mm 57000 Series Size 23

NOTE: Lead Screw extends beyond encoder on specific captive and non-captive motors. External linear shaft extension is available upon reauest.

Differential Ended Encoder - Pinout - Size 23			
Connector Pin #	Description		
1	Ground		
2	Ground		
3	– Index		
4	+ Index		
5	Channel A –		
6	Channel A +		
7	+5 VDC Power		
8	+5 VDC Power		
9	Channel B –		
10	Channel B +		

Electrical Specifications				
	Minimum	Typical	Maximum	Units
Input Voltage	4.5	5.0	5.5	VDC
Output Signals	4.5	5.0	5.5	VDC

2 channel quadrature TTL squarewave outputs.

Channel B leads A for a clockwise rotation of the rotor viewed from the encoder cover.

Tracks at speeds of 0 to 100,000 cycles/sec.

Optional index available as a 3rd channel (one pulse per revolution).

Operating Temperature		
Size 23	Minimum	Maximum
3126 23	- 40°C (- 40°F)	100°C (212°F)

Mechanical Specifications			
	Maximum		
Acceleration	250,000 rad/sec2		
Vibration (5 Hz to 2 kHz)	20 g		

Resolution						
4 Standard Cycles Per Revolution (CPR) or Pulses Per Revolution (PPR)						
					2000	
Size 23	PPR	800	1600*	4000	8000	

*Index Pulse Channel not available. Contact us for additional resolution options

Single Ended Encoder - Pinout - Size 23				
Connector Pin #	Description	Connector Pin #	Description	
1	Ground	4	+5 VDC Power	
2	Index (optional)	5	Channel B	
3	Channel A			

57000 Series Size 23 Double Stack Hybrid Linear Actuators

Greater performance in a compact size

The various patented designs deliver exceptional performance and new linear motion design opportunities. The 57000 Series is available in a wide variety of resolutions, from 0.0005-in (.0127 mm) per step to 0.005-in (.127 mm) per step. The motors can also be microstepped for even finer resolutions.

3 Available Designs

- Captive
- Non-Captive
- External Linear

The Size 23 actuator delivers thrust of up to 200 lbs. (890 N).

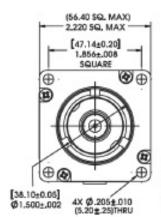
Size 23 Double Stack: 57 mm (2.3-in) Hybrid Linear Actuator (1.8° Step Angle)					
	Captive	57M4 – – †			
Part No.	Non-Captive		57L4 – – †		
	External Linear		E57M4 – – †		
	Wiring		Bipolar		
Wind	ling Voltage	3.25 VDC 5 VDC 12 VDC			
Current	t (RMS)/phase	3.32 A 2.16 A 0.9 A			
Resis	tance/phase	0.98 Ω 2.31 Ω 13.33 Ω			
Induc	tance/phase	2.3 mH 7.6 mH 35.0 mH			
Power	Consumption		21.6 W Total		
Ro	tor Inertia	321 gcm ²			
Insu	lation Class	Class B (Class F available)			
	Weight	32 oz (958 g)			
Insulati	on Resistance	20 ΜΩ			

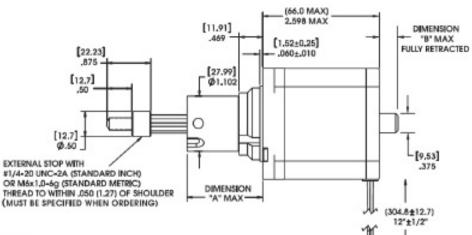
†Part numbering information on page 131.

Linear Tra	Linear Travel / Step		
Screw Ø.375	Screw Ø.375" (9.53 mm)		
inches	mm	Code I.D.	
.0005	.0127*	3	
.001	.0254*	1	
.002	.0508	2	
.0025	.0635	Υ	
.005	.127	Z	

Standard motors are Class B rated for maximum temperature of 130°C.

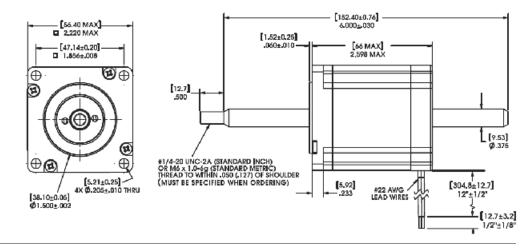
Special drive considerations may be necessary when leaving shaft fully extended or fully retracted.





Captive Lead Screw

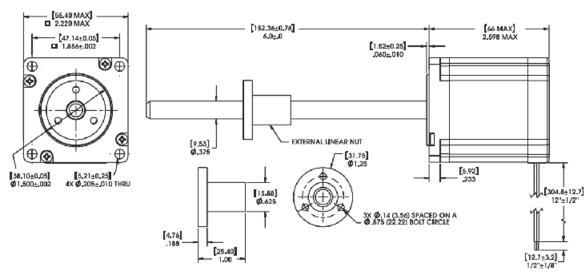
422 AWG


(12,70±3,2)

Stroke	Dim. "A"	Dim. "B"	Suffix #	M6x1.0 Thread
0.500 (12.7)	1.01 (25.7)	0 (0)	-905	-805
0.750 (19.05)	1.26 (32.0)	0.110 (2.77)	-907	-807
1.000 (25.4)	1.51 (38.4)	0.360 (7.37)	-910	-810
1.250 (31.8)	1.76 (44.7)	0.610 (15.47)	-912	-812
1.500 (38.1)	2.01 (51.1)	0.860 (21.83)	-915	-815
2.00 (50.8)	2.51 (63.8)	1.360 (34.52)	-920	-820
2.500 (63.5)	3.01 (76.5)	1.860 (47.22)	-925	-825

Non-Captive Lead Screw

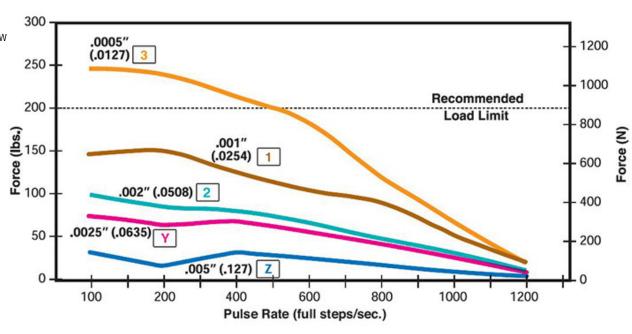
Dimensions = (mm) inches


Up to 18-in (457 mm) standard screw lengths. Longer screw lengths are available.

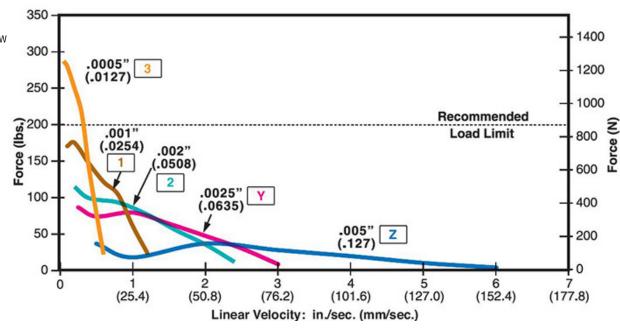
External Linear

Dimensions = (mm) inches

Up to 12-in (305 mm) standard screw lengths. Longer screw lengths are available.


144 **Haydon** kerk

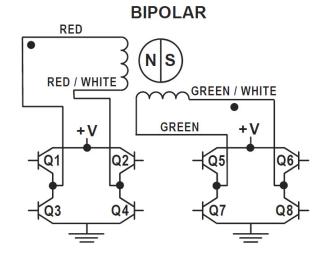
www.haydonkerkpittman.com


FORCE vs. PULSE RATE

- Chopper
- Bipolar
- 100% Duty Cycle
- Ø .375 (9.53) Lead Screw

FORCE vs. LINEAR VELOCITY

- Chopper
- Bipolar
- 100% Duty Cycle
- Ø .375 (9.53) Lead Screw



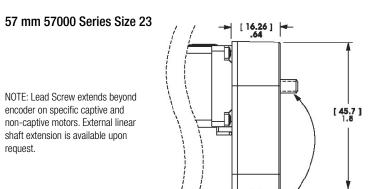
Identifying the Hybrid Part Number Codes when Ordering

E	57	M	4	3	3.25	910
Prefix	Series Number	Style	Coils	Code ID Resolution	Voltage	Suffix
(include only when	Designation	L = 1.8°	4 = Bipolar	Travel/Step	3.25 = 3.25 VDC	Stroke
using the following)	57 = 57000	Non-captive	(4 wire)	3 = .0005-in (.0127)	05 = 5 VDC	Example: $-910 = 1$ -in
A = A Coil (See AC	(Series numbers represent	$\mathbf{M} = 1.8^{\circ}$ Captive or		1 = .001-in (.0254)	12 = 12 VDC	(Refer to Stroke chart on Captive
Synchronous Data Sheet)	approximate	External (use "E" or "K" Prefix		2 = .002-in (.0508)	Custom V available	motor series product page.)
E = External	width of motor	for External		Y = .0025-in (.0635)		Suffix also represents:
K = External with	body)	version)		Z = .005-in (.127)		-800 = Metric
40° thread		,				-900 = External Linear with grease and flanged nut
P = Proximity Sensor						-XXX = Proprietary suffix assigned to a specific customer
S = Home Position Switch						application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 203 756 7441.

Hybrids: Wiring

Hybrids: Stepping Sequence


	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8	
\mathbb{Z}	Step					
EXTEND	1	ON	0FF	ON	0FF	
CW -	2	OFF	ON	ON	0FF	CCW
	3	0FF	ON	0FF	ON	RETRACT
•	4	ON	OFF	OFF	ON	REI
	1	ON	OFF	ON	OFF	

Note: Half stepping is accomplished by inserting an off state between transitioning phases.

Encoders Designed for All Sizes of Hybrid Linear Actuators

All Haydon Hybrid Linear Actuators are available with specifically designed encoders for applications that require feedback. The compact optical incremental encoder design is available with two channel quadrature TTL squarewave outputs. An optional index is also available as a 3rd channel. The Size 23 encoder is offered in resolutions of 200, 400, 1,000 and 2,000 counts per revolution. Encoders are available for all motor configurations, captive, non-captive and external linear.

Simplicity and low cost make the encoders ideal for both high and low volume motion control applications. The internal monolithic electronic module converts the real-time shaft angle, speed, and direction into TTL compatible outputs. The encoder module incorporates a lensed LED light source and monolithic photodetector array with signal shaping electronics to produce the two channel bounceless TTL outputs.

Differential Ended Encod	ler - Pinout - Size 23	
Connector Pin #	Description	
1	Ground	
2	Ground	
3	– Index	
4	+ Index	
5	Channel A –	
6	Channel A +	
7	+5 VDC Power	
8	+5 VDC Power	
9	Channel B –	
10	Channel B +	

Electrical Specifications					
	Minimum	Typical	Maximum	Units	
Input Voltage	4.5	5.0	5.5	VDC	
Output Signals	4.5	5.0	5.5	VDC	

2 channel quadrature TTL squarewave outputs.

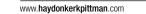
Channel B leads A for a clockwise rotation of the rotor viewed from the encoder cover.

Tracks at speeds of 0 to 100,000 cycles/sec.

Optional index available as a 3rd channel (one pulse per revolution).

	Operating Temperature			
	Size 23	Minimum	Maximum	
		- 40°C (- 40°F)	100°C (212°F)	

Mechanical Specifications			
	Maximum		
Acceleration	250,000 rad/sec2		
Vibration (5 Hz to 2 kHz)	20 g		


Resolution					
4 Standard Cycles Per Revolution (CPR) or Pulses Per Revolution (PPR))
Size 23	CPR	200	400*	1000	2000
3126 23	PPR	800	1600*	4000	8000

*Index Pulse Channel not available. Contact us for additional resolution options

Single Ended Encoder - Pinout - Size 23						
Connector Pin #	Description	Connector Pin #	Description			
1	Ground	4	+5 VDC Power			
2	Index (optional)	5	Channel B			
3	Channel A					

87000 Series Size 34 Hybrid Linear Actuators

Our largest, most powerful linear actuator

Size 34 incorporates the same precision, high performance and durable patented designs featured in our entire hybrid product line.

3 Available Designs

- Captive
- Non-Captive
- External Linear

The 87000 series delivers forces up to 500 lbs. (2224 N) in a compact, 3.4-in (87 mm) square package. Available in a wide variety of resolutions, from 0.0005-in (.0127 mm) per step to 0.005-in (.127 mm) per step. Speeds exceed 3.0-in (7.62 cm) per second.

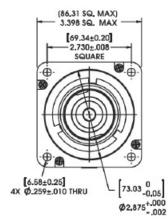
In addition to our standard configurations, we can custom build this powerful motor to meet your specific motion requirements.

Size 34: 87 mm (3.4-in) Hybrid Linear Actuator (1.8° Step Angle)								
	Captive		87H4 –	_ †		87H6 –	_ †	
Part No.	Non- Captive		87F4 – – †			87F4 – – †		
	External Linear		E87H4 – – †				E87H6 – – †	
Wir	Wiring Bipolar			Unipo	olar**			
Winding	Voltage	2.85 VDC	5 VDC	6 VDC	12 VDC	5 VDC	12 VDC	
Current (R	MS)/phase	5.47 A	3.12 A	2.6 A	1.3 A	3.12 A	1.3 A	
Resistan	ce/phase	0.52 Ω	1.6 Ω	2.31 Ω	9.23 Ω	1.6 Ω	9.23 Ω	
Inductan	ce/phase	2.86 mH	8.8 mH	12.7 mH	51 mH	4.4 mH	25.5 mH	
Power Cor	nsumption			31.	2 W			
Rotor	Inertia	ertia 1760 gcm ²						
Insulatio	on Class B (Class F available)							
Wei	ight		5.1 lbs. (2.3 Kg)					
Insulation	Resistance			20 1	MΩ			

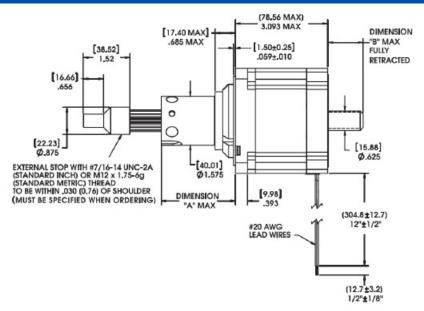
Linear Tra	Order Code I.D.	
inches	mm	OOUC I.D.
.0005	.0127	3
.000625	.0158*	В
.00125	.0317*	С
.0025	.0635	Υ
.005	.127	Z

*Values truncated.

Standard motors are Class B rated for maximum temperature of 130°C.

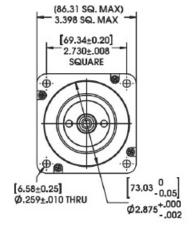

Special drive considerations may be necessary when leaving shaft fully extended or fully retracted.

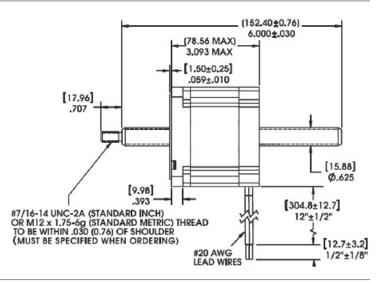
†Part numbering information on page 136. ** Unipolar drive gives approximately 30% less thrust than bipolar drive.


■ 87000 Series • Size 34 Single Stack Stepper Motor Linear Actuators

Captive Lead Screw

Dimensions = (mm) inches

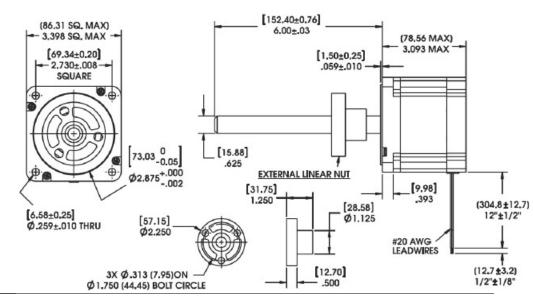

Stroke	Dim. "A"	Dim. "B"	Suffix #	M12x1.75 Thread
0.500 (12.7)	1.225 (31.12)	0 (0)	-905	-805
1.000 (25.4)	1.725 (43.82)	0.25 (6.35)	-910	-810
1.500 (38.1)	2.225 (56.52)	0.75 (19.05)	-915	-815
2.00 (50.8)	2.725 (69.22)	1.25 (31.75)	-920	-820
2.500 (63.5)	3.225 (81.92)	1.75 (44.45)	-925	-825



Non-Captive Lead Screw

Dimensions = (mm) inches

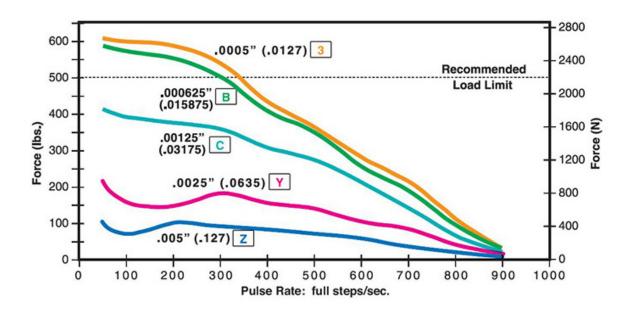
Up to 18-in (457 mm) standard screw lengths. Longer screw lengths are available.



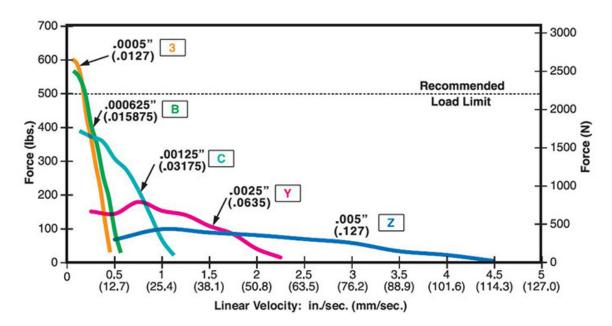
External Linear

Dimensions = (mm) inches

Up to 12-in (305 mm) standard screw lengths. Longer screw lengths are available.



Maydon (kerk)



FORCE vs. PULSE RATE – Chopper – Bipolar – 100% Duty Cycle

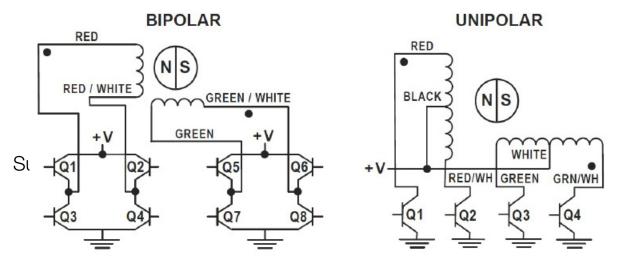
- Ø .625 (15.88) Lead Screw

FORCE vs. LINEAR VELOCITY – Chopper – Bipolar – 100% Duty Cycle - Ø .625 (15.88) Lead Screw

NOTE: All chopper drive curves were created with a 5 volt motor and a 75 volt power supply.

Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.



Identifying the Hybrid Part Number Codes when Ordering

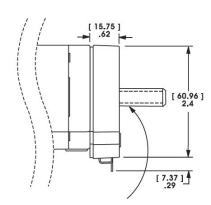
Prefix (include only when using the following)	E	87	Н	4	С	2.85	910
NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 203 756 7441.	(include only when using the following) A = A Coil (See AC Synchronous Data Sheet) E = External K = External with 40° thread form P = Proximity Sensor S = Home Position	Designation 87 = 87000 (Series numbers represent approximate width of motor	F = 1.8° Non-captive H = 1.8° Captive or External (use "E" or "K" Prefix for External version)	4 = Bipolar (4 wire) 6 = Unipolar (6 wire)	Travel/Step 3 = .0005-in (.0127) B = .000625-in (.0158) C = .00125-in (.0317) Y = .0025-in (.0635) Z = .005-in (.127)	2.85 = 2.85 VDC 05 = 5 VDC 06 = 6 VDC 12 = 12 VDC Custom V available	Stroke Example: -910 = 1-in (Refer to Stroke chart on Captive motor series product page.) Suffix also represents: -800 = Metric -900 = External Linear with grease and flanged nut -XXX = Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard

Hybrids: Wiring

Hybrids: Stepping Sequence

A
CCW
RETRACT
E
3

Note: Half stepping is accomplished by inserting an off state between transitioning phases.


Encoders Designed for All Sizes of Hybrid Linear Actuators

All Haydon Hybrid Linear Actuators are available with specifically designed encoders for applications that require feedback. The compact optical incremental encoder design is available with two channel quadrature TTL squarewave outputs. An optional index is also available as a 3rd channel. The Size 34 encoder is offered in resolutions of 200, 400, 1,000 and 2,000 counts per revolution. Encoders are available for all motor configurations: captive, non-captive and external linear.

Simplicity and low cost make the encoders ideal for both high and low volume motion control applications. The internal monolithic electronic module converts the real-time shaft angle, speed, and direction into TTL compatible outputs. The encoder module incorporates a lensed LED light source and monolithic photodetector array with signal shaping electronics to produce the two channel bounceless TTL outputs.

87 mm 87000 Series Size 34

NOTE: Lead Screw extends beyond encoder on specific captive and non-captive motors. External linear shaft extension is available upon request.

Differential Ended Encoder - Pinout - Size 34					
Connector Pin #	Description				
1	Ground				
2	Ground				
3	– Index				
4	+ Index				
5	Channel A –				
6	Channel A +				
7	+5 VDC Power				
8	+5 VDC Power				
9	Channel B –				
10	Channel B +				

Electrical Specifications									
	Minimum	Typical	Maximum	Units					
Input Voltage	4.5	5.0	5.5	VDC					
Output Signals	4.5	5.0	5.5	VDC					

² channel quadrature TTL squarewave outputs.

Optional index available as a 3rd channel (one pulse per revolution).

Operating Temperature		
Size 34	Minimum	Maximum
	- 40°C (- 40°F)	100°C (212°F)

Mechanical Specifications						
	Maximum					
Acceleration	250,000 rad/sec2					
Vibration (5 Hz to 2 kHz)	20 g					

Resolution								
4 Standard Cycles Per Revolution (CPR) or Pulses Per Revolution (PPR)								
Size 34	CPR	200	400*	1000	2000			
3126 34	PPR	800	1600*	4000	8000			

*Index Pulse Channel not available Contact us for additional resolution options

Single Ended Encoder - Pinout - Size 34								
Connector Pin #	Description	Connector Pin #	Description					
1	Ground	4	+5 VDC Power					
2	Index (optional)	5	Channel B					
3	Channel A							

Encoder Ready Option Shown 34000 Series Size 17

Extended Rotor Journal Shown 34000 Series Size 17

Integrated Anti-Backlash Nut

Encoder Ready Option for all Hybrid Sizes

Our Hybrid Linear Actuators can now be manufactured as an Encoder Ready Actuator. Encoder Ready Actuators can be used to install several popular hollow shaft encoders. Available with an extended rotor journal and a threaded rear housing. The motor uses a proprietary manufacturing process which incorporates engineering thermoplastics in the rotor drive nut and a stainless steel Acme Lead Screw that allows the motor to be much more efficient and durable than today's more commonly used V-thread bronze nut configurations.

Size 23 Mounting Face Plate for Size 17 Hybrids

Size 23 mounting pattern for our Hybrid Size 17 Linear Actuators.

Extended Rotor Journal for all Hybrid Sizes

Available with an extended rotor journal. The extended rotor journal can be used for encoder installation, manual adjustment, or flag installation for a positioning sensor.

Home Position Switch for Hybrids

A miniature electronic Home Position Switch capable of monitoring the home positions of linear actuators. The switch mounts on the rear sleeve of captive linear motors and allows the user to identify start, stop or home positions.

When ordering motors with the home position switch the part number should be preceded by an "S" prefix.

End of Stroke Proximity Sensor for all Hybrid Sized

The Sensor incorporates a hall effect device, which is activated by a rare earth magnet embedded in the end of the internal screw. The compact profile of the sensor allows for installation in limited space applications. The sensor has a virtually unlimited cycle life. Special cabling and connectors can also be provided.

When ordering motors with the proximity sensor, the part number should be preceded by a "P" prefix.

Black Ice® and Kerkote® TFE Coated Lead Screws*

TFE Coated Lead Screws for applications that require a greaseless screw and nut inter-

A dry (non-lubricated) TFE coated lead screw provides improved performance in both life and thrust as compared to a conventional stainless steel lead screw. TFE can be applied to a wide variety of lead screw pitches and is available for our brand captive, non-captive and external linear actuators. Not available for 0.00006-in (.0015 mm) and 0.000098-in (.0025 mm) resolutions.

*Certain conditions apply.

Integrated Anti-Backlash Nut for Hybrids*

Most sizes (except Size 34) of our captive and non-captive hybrid stepper motors can be equipped with an integral anti-backlash feature. There is a normal backlash between the lead screw and integral rotor nut.

Our actuators are designed for millions of cycles. However over time, additional backlash could increase and eventually double. Haydon Kerk Integrated Anti-Backlash Nut can eliminate all backlash. Designed specifically for our captive and non-captive hybrid motors. nuts use an opposing spring force to eliminate backlash between the screw and the nut interface. The nuts will self-compensate and accommodate any wear. Haydon Kerk Motion Solutions application engineers can help you select the appropriate preload for your application.

*Except Size 34

Channel B leads A for a clockwise rotation of the rotor viewed from the encoder cover.

Tracks at speeds of 0 to 100,000 cycles/sec.

Dual Motion

Size 14 Linear/Rotary Actuators

Axially move components to their insertion positions and then rotate them.

Based on unique, patented designs and incorporate proven motor technology. Units simplify product development by replacing what would otherwise be far more bulky and complex mechanisms.

Another feature of this design is to provide an electric motor in which linear and rotary motions are controllable independently of one another.

For a rotary/linear motor, it is desirable that the linear and rotary motions be controllable independently of one another. These devices can be run using a standard two axis stepper motor driver. Performance can be enhanced using chopper and/or microstepping drives.

Encoders available. US Digital E5 for linear, E6 for rotary.

✓ Dual Motion • 35000 Series Size 14 Linear/Rotary Actuators

35000 Series: 1.8° Step Angle								
Linear Tra	vel / Step	Load	Limit	Order Code L.D.				
inches	mm	lbs	N	Older Gode I.D.				
0.00006	0.0015*	10	44.4	U				
0.000098*	0.0025	10	44.4	AA				
0.00012	0.0030*	15	67	N				
0.00019*	0.005	15	67	AB				
0.00024	0.0061*	15	67	K				
0.00039*	0.01	15	67	AC				
0.00048	0.0121*	15	67	J				
0.00078*	0.02	15	67	AD				
0.00157*	0.04	15	67	AE				

*Values truncated. Standard motors are Class B rated for maximum temperature of 13	o°C
--	-----

35000 Series: 0.9° Step Angle							
Linear Tra	vel / Step	Load	Limit	Order Code I.D.			
inches	mm	lbs	N	Older Gode I.D.			
0.00003	0.00076*	10	44.4	BP			
0.00005*	0.00125	10	44.4	AY			
0.00006	0.0015*	15	67	U			
0.000098*	0.0025	15	67	AA			
0.00012	0.0030*	15	67	N			
0.00019*	0.005	15	67	AB			
0.00024	0.0061*	15	67	K			
0.00039*	0.01	15	67	AC			
0.00079*	0.02	15	67	AD			

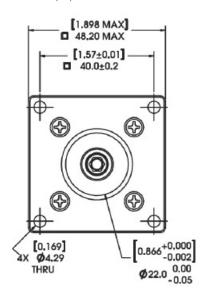
 $^*\mbox{Values}$ truncated. Standard motors are Class B rated for maximum temperature of 130°C.

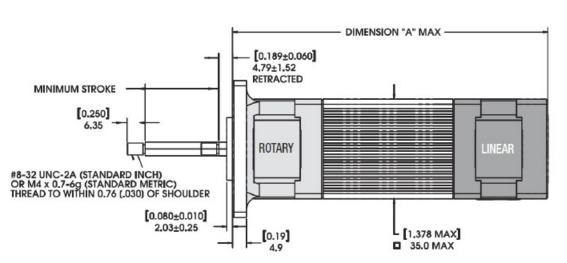
Identifying the Series 35000 Series Dual Motion Part Number Codes when Ordering

LR	35	Н	H	4		J	_	05	_	910
Prefix LR = Linear/Rotary	Series Number Designation	Rotary Step Angle H = 1.8°	Linear Step Angle	Coils 4 = Bipolar	1.8° Step Angle Code ID Resolution Travel/Step	0.9° Step Angle Code ID Resolution Travel/Step		Voltage 05 = 5 VDC		Suffix Stroke Example:
	35 = 35000	K = 0.9° M = 1.8° Double Stack P = 0.9° Double Stack	H = 1.8° K = 0.9°	(4 wire) 6 = Unipolar (6 wire)	U = .00006-in (.0015) AA = .000098-in (.0025) N = .00012-in (.0030) AB = .00019-in (.005) K = .00024-in (.0061) AC = .00039-in (.01) J = .00048-in (.0121) AD = .00078-in (.02) AE = .00157-in (.04)	BP = .00003-in (.00076) AY = .00005-in (.00125) U = .00006-in (.0015) AA = .000098-in (.0025) N = .00012-in (.0030) AB = .00019-in (.005) K = .00024-in (.0061) AC = .00039-in (.01) AD = .00078-in (.02)		12 = 12 VDC SP = Mixed Voltages Custom V available		-910 = 1-in (26 mm) -XXX = Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 203 756 7441.

See 35000 Series Hybrid Linear Data Sheet for More Detailed Motor Information.

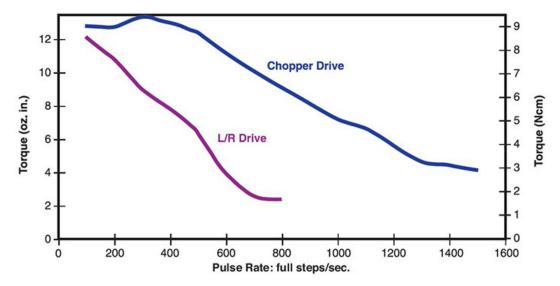



Dual Motion Actuators

The Haydon Kerk line of dual motion hybrid actuators provide independent linear and rotary motion from a single compact actuator package. The actuators are based on unique, patented designs and incorporate Haydon Kerk proven linear and rotary motor technology. These

units simplify product development by replacing what would otherwise be far more bulky and complex mechanisms.

Dimensions = (mm) inches



Stroke	Dim. "A"	Suffix #	M4x0.7 Thread
0.500 (12.7)	3.9 (99.3)	-905	-805
1.00 (25.4)	4.409 (112.0)	-910	-810
2.00 (50.8)	5.409 (137.4)	-920	-820
4.00 (101.6)	7.409 (188.2)	-925	-825

Standard strokes available: 1-in. (26 mm), 2-in. (51 mm) and 4-in. (102 mm). Customized strokes available to 6-in. (152 mm)

TORQUE vs. PULSE RATE: ROTARY FUNCTION – Bipolar – 100% Duty Cycle

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.

Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.

Dual Motion Size 17 Linear/Rotary Actuators

Provide linear and rotary motions, controllable independently of one another.

For a rotary/linear motor, it is desirable that the linear and rotary motions be controllable independently of one another. These devices can be run using a standard two axis stepper motor driver. Performance can be enhanced using chopper and/or microstepping drives.

The actuators are based on unique, patented designs and incorporate proven motor technology. These units simplify product development by replacing what would otherwise be far more bulky and complex mechanisms.

Encoders available. US Digital E5 for linear, E6 for rotary.

Identifying the Series 43000 Series Dual Motion Part Number Codes when Ordering

LR	43	Н	Н	4		J	- 05	_	910
Prefix	Series	Rotary Step	Linear	Coils	1.8° Step Angle	0.9° Step Angle	Voltage		Suffix
LR =	Number	Angle	Step	4 =	Code ID Resolution	Code ID Resolution	05 =		Stroke
Linear/Rotary	Designation	H = 1.8°	Angle	Bipolar	Travel/Step	Travel/Step	5 VDC		Example:
	43 = 43000	$K = 0.9^{\circ}$	H = 1.8°	(4 wire)	N = .00012-in (.003)	U = .00006-in (.0015)	12 =		-910 = 1-in
		$M = 1.8^{\circ}$	$K = 0.9^{\circ}$	6 = Unipolar	7 = .000125-in (.0031)	BB = .0000625-in (.0016)	12 VDC		(26 mm)
		Double Stack		(6 wire)	$\mathbf{P} = .00015625 - \text{in} (.0039)$	V = .00007825-in (.00198)	SP =		-XXX =
				(==)	AB = .00019 - in (.005)	AA = .000098-in (.0025)	Mixed Voltages		Proprietary suffix assigned to a
		$P = 0.9^{\circ}$ Double			K = .00024-in (.006)	N = .00012-in (.003)	Custom V		specific customer
		Stack			9 = .00025-in (.0063)	7 = .000125-in (.0031)	available		application.
					A = .0003125-in (.0079)	P = .00015625-in (.0039)			The identifier can
					AC = .00039 - in (.01)	AB = .00019-in (.005)			apply to either a standard or
					J = .00048-in (.0121)	K = .00024-in (.006)			custom part.
					3 = .0005-in (.0127)	9 = .00025-in (.0063)			,,,,,
					B = .000625-in (.0158)	A = .0003125-in (.0079)			
					AQ = .00098-in (.025)	BG = .00049-in (.0125)			
					Q = .00096-in (.0243)	J = .00048-in (.0121)			
					C = 0.00125-in (.0317)	B = .000625-in (.0158)			
					BH = .00196-in (.05)	AQ = .00098-in (.025)			
					R = 0.00192-in (.0487)	Q = .00096-in (.0243)			
					Y = .0025-in (.0635)	C = .00125-in (.0317)			
					AG = .00375-in (.0953)	AF = .001875-in (.0476)			
					Z = .005-in (.127)	Y = .0025-in (.0635)			
					, ,	- ,			

NOTE: Dashes must be included in Part Number (–) as shown above. For assistance call our Engineering Team at 203 756 7441.

See 43000 Series Hybrid Linear Data Sheet for More Detailed Motor Information.

Linear Tra	vel / Step	Load	Limit	Order Code I.D.
inches	mm	lbs	N	Order Code I.D.
0.00012	0.003*	30	133	N
0.000125	0.0031*	30	133	7
0.00015625	0.0039*	30	133	Р
0.00019*	0.005	30	133	AB
0.00024	0.0060*	30	133	K
0.00025	0.0063*	30	133	9
0.0003125	0.0079*	50	222	А
0.00039*	0.01	50	222	AC
0.00048	0.0121*	50	222	J
0.0005	0.0127*	50	222	3
0.000625	0.0158*	50	222	В
0.00098*	0.025	50	222	AQ
0.00096	0.0243*	50	222	Q

43000 Series: 1.8° Step Angle

43000 Series: 0.9° Step Angle							
Linear Tra	vel / Step	Load	Limit	Order Code I.D.			
inches	mm	lbs	N	Order Gode I.D.			
0.00006	0.0015*	30	133	U			
0.0000625	0.0016*	30	133	BB			
0.00007825	0.00198*	30	133	V			
0.000098*	0.0025	30	133	AA			
0.00012	0.003*	30	133	N			
0.000125	0.0031*	30	133	7			
0.00015625	0.0039*	50	222	Р			
0.00019*	0.005	50	222	AB			
0.00024	0.0060*	50	222	K			
0.00025	0.0063*	50	222	9			
0.0003125	0.0079*	50	222	А			
0.00049*	0.0125	50	222	BG			
0.00048	0.0121*	50	222	J			
0.000625	0.0158*	50	222	В			
0.00098*	0.025	50	222	AQ			
0.00096	0.0243*	50	222	Q			
0.00125	0.0317*	50	222	С			
0.001875	0.0476*	50	222	AF			
0.0025	0.0635	50	222	Υ			

50

50

50

50

50

50

222

222

222

222

222

222

C

BH

R

AG

Ζ

0.0317

0.05

0.0487*

0.0635

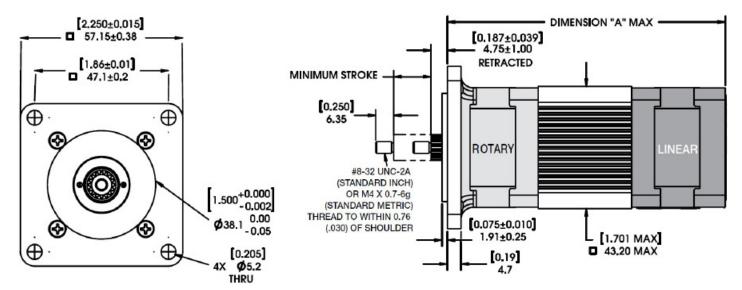
0.0953*

0.127

*Values truncated. Standard motors are Class B rated for maximum temperature of 130°C.

Dimensions = (mm) inches

0.00125

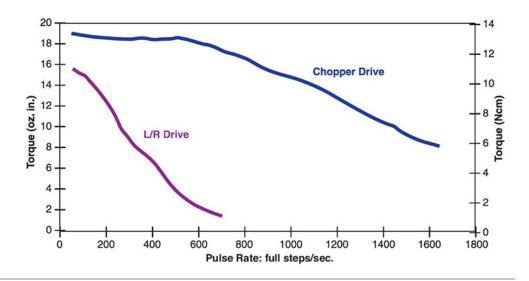

0.00196*

0.00192

0.0025

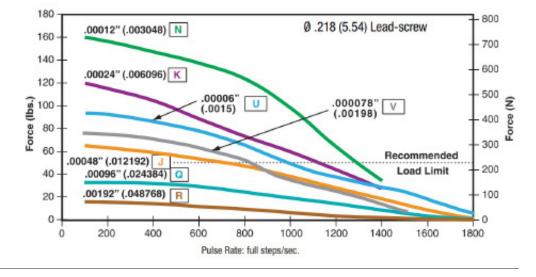
0.00375

0.005

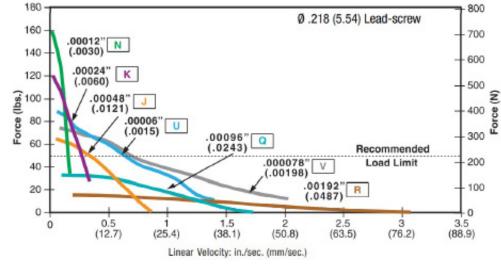


Stı	oke	Dim. "A"	Suffix #	M4x0.7 Thread
0.50	00 (12.7)	3.9 (99.3)	-905	-805
1.0	00 (25.4)	4.409 (112.0)	-910	-810
2.0	00 (50.8)	5.409 (137.4)	-920	-820
4.00	(101.6)	7.409 (188.2)	-925	-825

Standard strokes available: 1-in. (26 mm), 2-in. (51 mm) and 4-in. (102 mm). Customized strokes available to 6-in. (152 mm)


TORQUE vs. PULSE RATE: ROTARY FUNCTION

- Bipolar
- 100% Duty Cycle


FORCE vs. PULSE RATE: LINEAR FUNCTION

- Chopper
- Bipolar
- 100% Duty Cycle
- 8:1 Motor Coil to Drive Supply Voltage

FORCE vs. LINEAR VELOCITY

- Chopper
- Bipolar
- 100% Duty Cycle
- 8:1 Motor Coil to Drive Supply Voltage

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.

Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.

^{*}Values truncated. Standard motors are Class B rated for maximum temperature of 130°C.

Can-Stack Actuators

The Haydon™ brand of can-stack stepper motor linear actuators provides both a broader range and, for a given size, significantly higher thrust than previously available from mini-steppers. Haydon Kerk Motion Solutions patented design accepts a larger rotor than conventional units, improving efficiency and eliminating the need for massive heat sinks. Unique features impart ruggedness and reliability that assure long life and consistent performance. Rare earth magnets are available for even higher thrust. All units are built with dual ball bearings for greater motion control, precise step accuracy and long life.

G4 19000 Series Ø 20 mm (.79-in) Can-Stack Stepper Motor Linear Actuators

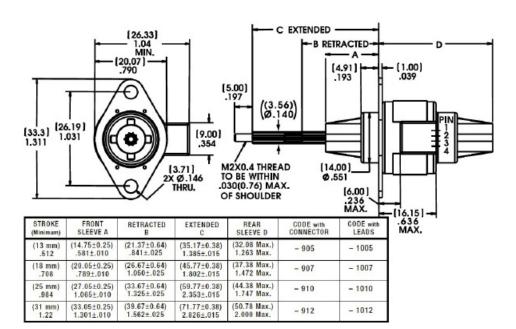
Utilizing high energy rare earth (neodymium) magnets, the G4 Series linear actuators consistently deliver exceptional performance. All units are built with dual ball bearings.

The highest force of any similar size linear actuator stepper motor

Multiple versions available

- Captive
- External Linear

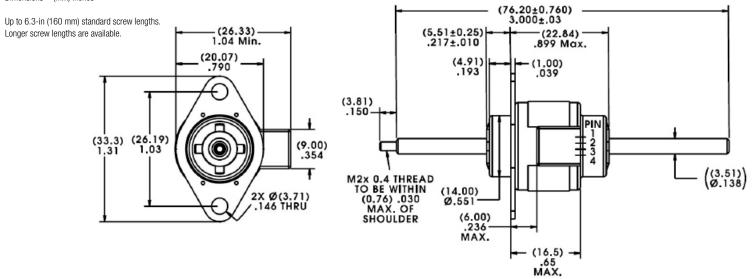
Specifications

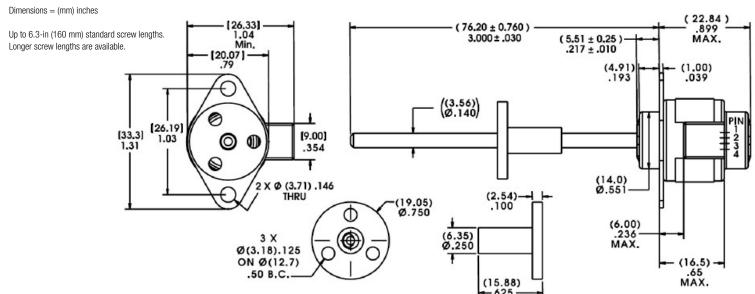

Ø 20 mm (.79-in) Motor						
	Captive	1944 –	_ †	1954 –	_ †	
Part No.	Non-Captive	1934 –	_ †	1984 –	†	
	External Linear*	E1944 –	†	E1954 –	_ †	
,	Wiring		Bip	olar		
St	ep angle	7.5°		15°		
Winding Voltage		5 VDC	12 VDC	5 VDC	12 VDC	
Current	(RMS)/phase	350 mA	160 mA	338 mA	140 mA	
Resist	tance/phase	14.0 Ω	74.5 Ω	14.8 Ω	85.5 Ω	
Induct	tance/phase	6.24 mH	31.2 mH	6.84 mH	37.8 mH	
Power	Consumption	3.38 W				
Insul	ation Class	Class B				
1	Weight	1.24 oz (35 g)				
Insulation	on Resistance		20	MΩ		

Lir	Order Code I.D.					
step	step inches mm					
	0.0005	0.013	3			
7.5° Angle	0.001	0.0254	1			
7 ti igio	0.002	0.051	2			
	0.001	0.0254	1			
15° Angle	0.002	0.051	2			
7 ti igio	0.004	0.102	4			

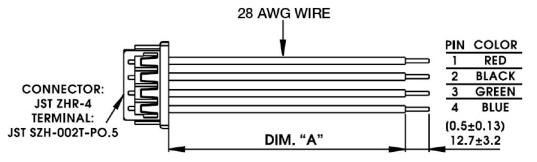
Special drive considerations may be necessary when leaving shaft fully extended or fully retracted. Standard motors are Class B rated for maximum temperature of 130° C (266° F).

Captive Lead Screw

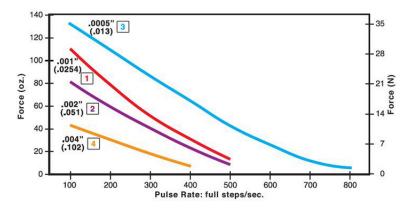

Dimensions = (mm) inches


[†]Part numbering information on page 147.

Non-Captive Lead Screw

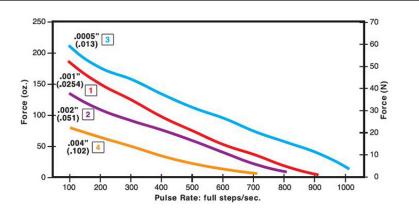


External Linear

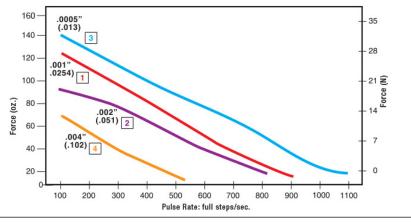

Connector

Part Number	Dimension "A"
56-1318-4	(24 ±0.39) 610 ±10 mm
56-1318-3	(18 ±0.39) 450 ±10 mm
56-1318-2	(12 ±0.39) 305 ±10 mm
56-1318-1	(6 ±0.39) 150 ±10 mm

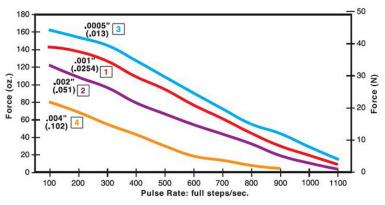
FORCE vs. PULSE RATE


- L/R Drive
- Bipolar
- 100% Duty Cycle

FORCE vs. PULSE RATE


- L/R Drive
- Bipolar
- 25% Duty Cycle

Obtained by a special winding or by running a standard motor at double the rated current.


FORCE vs. PULSE RATE

- Chopper Drive
- Bipolar
- 100% Duty Cycle

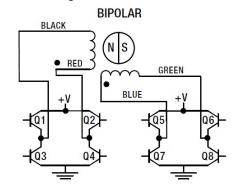
FORCE vs. PULSE RATE

- Chopper Drive
- Bipolar
- 25% Duty Cycle

Haydon kerk

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.

Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.



Identifying the Can-Stack Number Codes when Ordering

			, ,		•	
E	19	5	4	2	05	1005
Prefix (include only when using the following) E = External with 40° thread form P = Proximity Sensor S = Home Position Switch	Series Number Designation 19 = 19000 (Series numbers represent approximate diameters of motor body)	Style 3 = 7.5° Non-Captive 4 = 7.5° Captive or External (use "E" or "K" Prefix for External version) 5 = 15° Captive or External (use "E" or "K" Prefix for External version 8 = 15° Non-Captive	Coils 4 = Bipolar (4 wire)	Code ID Resolution Travel/Step 1 = .001-in (.0254) 2 = .002-in (.051) 3 = .0005-in (.013) 4 = .004-in (.102)	Voltage 05 = 5 VDC 12 = 12 VDC Custom V available	Suffix Stroke Example: -1005 = captive 13mm stroke with leads -XXX = Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 203 756 7441.

Can-Stacks: Wiring

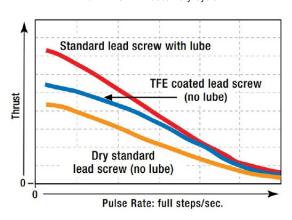
Can-Stacks: **Stepping Sequence**

EX	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8	
	Step					
EXTEND	1	ON	0FF	ON	OFF	
CW-	2	OFF	ON	ON	OFF	CCW
1	3	OFF	ON	OFF	ON	RETRACT
•	4	ON	0FF	OFF	ON	Æ
	1	ON	OFF	ON	OFF	

Note: Half stepping is accomplished by inserting an off state between transitioning phases.

■ Can-Stack Stepper Motor Linear Actuators Options

TFE Coated Lead Screws for applications that require a permanent, dry lubricant


Ideal for applications where conventional oils and greases cannot be used for lead screw lubrication.

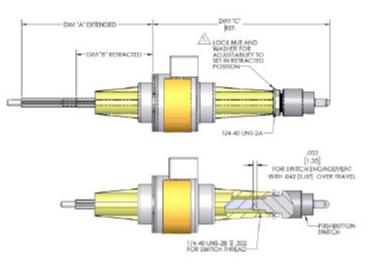
Non-lubricated TFE Coated Lead Screw provides improved performance in both life and thrust as compared to a "dry" stainless steel lead screw. TFE can be applied to a wide variety of lead screw pitches. Available captive, non-captive and external linear.

Typical applications: where contamination from grease or lubricants must be avoided; silicon wafer handling, clean rooms, medical equipment or laboratory instrumentation.

Lead Screw Comparison: FORCE vs. PULSE RATE

- L/R Drive - 100% Duty Cycle

Home Position Switch monitors movements more precisely for greater control and improved quality control


Miniature electronic home position switch capable of monitoring the home positions of linear actuators. The switch mounts on the rear sleeve of captive linear motors and allows the user to identify start, stop or home positions. Depending on your preference, contacts can be normally open or normally closed. The contact closure is repeatable to within one step position, identifying linear movements as low as 0.0005-in (0.0013 cm) per step. Multiple contact switches are also available.

Activation force of 10 oz (2.78 N) required therefore may not be appropriate for smaller can-stack actuators.

When ordering motors with the home position switch, the part number should be preceded by an "S".

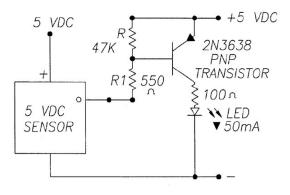
Specifications	
Contact Ratings (Standard)	1.00 AMP @ 120 VAC 1.00 AMP @ 28 VDC
Operating Temperature	-30°C to +55°C (-22°F to 131°F)
Electrical Life	< 20 milliohms typ. initial at 2 - 4 V DC, 100 mA Tested to 60,000 make-and-break cycles at full load
Schematic	1 T 3 Multiple contact options available.



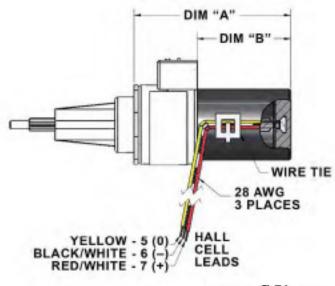
Stroke inches (mm)	Dim "A" Extended inches (mm)	Dim "B" Retracted inches (mm)	Dim "C" Ref. inches (mm)
.512 (13)	1.385 +/015	.841 +/025	2.230 +/025
	(35.17 +/- 0.38)	(21.37 +/- 0.64)	(56.63 +/- 0.64)
.708 (18)	1.802 +/015	1.050 +/025	2.438 +/025
	(45.77 +/- 0.38)	(26.67 +/- 0.64)	(61.93 +/- 0.64)
.984 (25)	2.353 +/015	1.325 +/025	2.714 +/025
	(59.77 +/- 0.38)	(33.67 +/- 0.64)	(68.93 +/- 0.64)

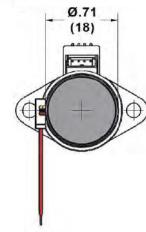
N/A Contact Customer Service

1.22 (31)



■ Can-Stack Stepper Motor Linear Actuators Options


End of Stroke Proximity Sensor incorporates a hall effect device, activated by a rare earth magnet embedded in the end of the internal screw


Compact profile of the sensor allows for installation in limited space applications. Virtually unlimited cycle life. Special cabling and connectors available.

Specifications				
Supply Vol	tage (VDC)	3.8 min. to 24 max.		
Current Co	onsumption	10 mA max.		
Output Voltage (operated)		0.15 typ., 0.40 max. Sinking 20 mA max.		
Output Current		20 mA max.		
Output Leak (rele	kage Current ased)	10µA max. @ Vout = 24 VDC; Vcc = 24 VDC		
Output Switching Rise, 10 to 90%		.05 µs typ., 1.5 µs max. @ Vcc = 12 V, RL = 1.6 KOhm		
Time	Fall, 90 to 10%	.15 μs typ., 1.5 μs max. @ CL = 20 pF		
Temperature		− 40 to +150°C		

NOTE: Sensor is category 2 ESD sensitive per DOD-STD-1686A. Assembly operations should be performed at workstations with conductive tops and operators grounded.

Stroke inches (mm)	Dim "A" Extended inches (mm)	Dim "B" Retracted inches (mm)
IIICIICS (IIIII)	mones (mm)	mones (mm)
.512 (13)	1.360 (34.55)	.73 (18.55)
.708 (18)	1.569 (39.85)	.94 (23.85)
.984 (25)	1.844 (46.85)	1.21 (30.85)
1.22 (31)	2.081 (52.85)	1.45 (36.85)

The sensor has virtually unlimited cycle life. Special cabling and connectors can also be provided.

G4 25000 Series Ø 25 mm (1.0-in) Can-Stack Stepper Motor Linear Actuators

High durability and exceptional performance. All units are built with dual ball bearings.

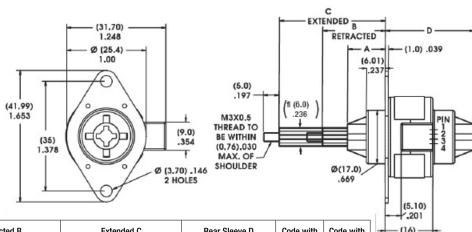
Generates higher force than other competitors

Multiple versions available

- Captive
- Non-Captive
- External Linear

Specifications

оросточно	pecinications				
	Ø 25 mm (1.0-in) Motor				
	Captive	2544 –	_	2554 –	†
Part No.	Non-Captive	2534 –	_ †	2584 –	†
	External Linear*	E2544 –	†	E2554 –	†
1	Wiring		Bip	olar	
Step angle		7.	7.5° 15°		5°
Winding Voltage		5 VDC	12 VDC	5 VDC	12 VDC
Current (RMS)/phase		385 mA	160 mA	385 mA	160 mA
Resistance/phase		13 Ω	72 Ω	13 Ω	72 Ω
Induct	ance/phase	10.8 mH	60 mH	8.08 mH	48 mH
Power	Consumption	3.85 W			
Rot	or Inertia	1.07 gcm ²			
Insul	ation Class	Class B			
ı	<i>N</i> eight	1.74 oz (49 g)			
Insulatio	on Resistance		20	ΜΩ	

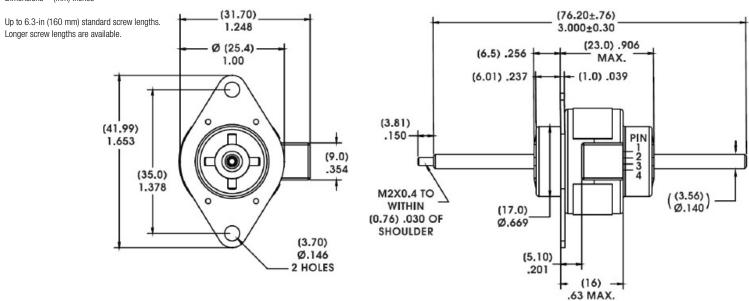

Lin	Order Code I.D.		
step	Code I.D.		
	0.0005	0.013	3
7.5° Angle	0.001	0.0254	1
7 tilgio	0.002	0.051	2
	0.001	0.0254	1
15° Angle	0.002	0.051	2
, anglo	0.004	0.102	4

Special drive considerations may be necessary when leaving shaft fully extended or fully retracted. Standard motors are Class B rated for maximum temperature of 130° C (266° F).

†Part numbering information on page 153.

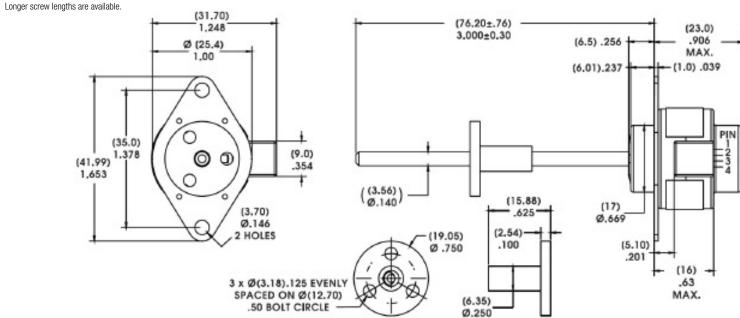
Captive Lead Screw

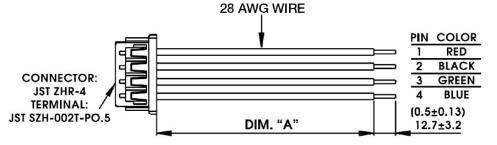
Dimensions = (mm) inches



Stroke (Minimum) inches (mm)	Front Sleeve A inches (mm)	Retracted B inches (mm)	Extended C inches (mm)	Rear Sleeve D inches (mm)	Code with Connector	Code with Leads	-
.512 (13 mm)	.472 +/010 (11.99 +/- 0.25)	.787 +/025 (19.99 +/- 0.64)	1.329 +/015 (33.76 +/- 0.38)	1.128 Max. (28.65 Max.)	- 905	- 1005	
.708 (18 mm)	.680 +/010 (17.28 +/- 0.25)	.994 +/025 (25.25 +/- 0.64)	1.743 +/015 (44.27 +/- 0.38)	1.336 Max. (33.94 Max.)	- 907	- 1007	
.984 (25 mm)	.955 +/010 (24.26 +/- 0.25)	1.269 +/025 (32.23 +/- 0.64)	2.293 +/015 (58.24 +/- 0.38)	1.611 Max. (40.92 Max.)	- 910	- 1010	
1.22 (31 mm)	1.191 +/010 (30.25 +/- 0.25)	1.505 +/025 (38.23 +/- 0.64)	2.765 +/015 (70.23 +/- 0.38)	1.847 Max. (46.91 Max.)	- 912	- 1012	

Non-Captive Lead Screw


Dimensions = (mm) inches


External Linear

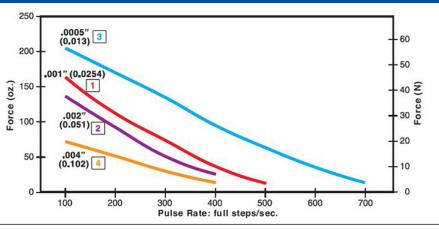
Dimensions = (mm) inches

Up to 6.3-in (160 mm) standard screw lengths.

Connector

Part Number	Dimension "A"
56-1318-4	(24 ±0.39) 610 ±10 mm
56-1318-3	(18 ±0.39) 450 ±10 mm
56-1318-2	(12 ±0.39) 305 ±10 mm
56-1318-1	(6 ±0.39) 150 ±10 mm

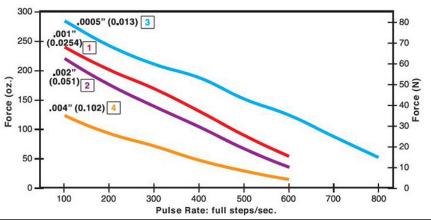
168 **Haydon** kerk



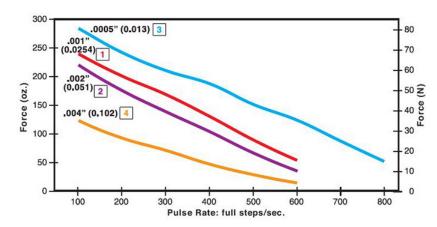
www.haydonkerkpittman.com

■ G4 25000 Series • Can-Stack Stepper Motor Linear Actuators

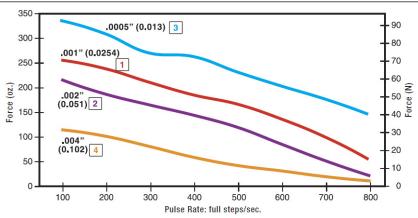
FORCE vs. PULSE RATE


- L/R Drive
- Bipolar
- 100% Duty Cycle

FORCE vs. PULSE RATE


- L/R Drive
- Bipolar
- 25% Duty Cycle

Obtained by a special winding or by running a standard motor at double the rated current.

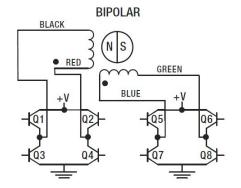

FORCE vs. PULSE RATE

- Chopper Drive
- Bipolar
- 100% Duty Cycle

FORCE vs. PULSE RATE

- Chopper Drive
- Bipolar
- 25% Duty Cycle

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply. Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.



Identifying the Can-Stack Number Codes when Ordering

Е	25	5	4	4	12	1010
Prefix (include only when using the following) E = External K = External with 40° thread form P = Proximity Sensor S = Home Position Switch	Series Number Designation 25 = 25000 (Series numbers represent approximate diameters of motor body)	Style 3 = 7.5° Non-Captive 4 = 7.5° Captive or External (use "E" or "K" Prefix for External version) 5 = 15° Captive or External (use "E" or "K" Prefix for External version 8 = 15° Non-Captive	Coils 4 = Bipolar (4 wire)	Code ID Resolution Travel/Step 1 = .001-in (.0254) 2 = .002-in (.051) 3 = .0005-in (.013) 4 = .004-in (.102)	Voltage 05 = 5 VDC 12 = 12 VDC Custom V available	Suffix Stroke Example: -1010 = captive 25mm stroke with leads -XXX = Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 203 756 7441.

Can-Stacks: Wiring

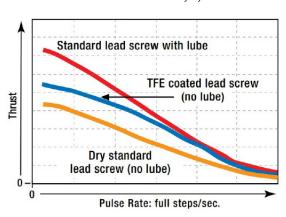
Can-Stacks: **Stepping Sequence**

	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8	
묒	Step					1
EXTEND	1	ON	OFF	ON	0FF	 ≥
QV —	2	OFF	ON	ON	OFF	RETRACT CCW
1	3	OFF	ON	OFF	ON	ETRA(
•	4	ON	OFF	OFF	ON	- E
	1	ON	OFF	ON	OFF	

Note: Half stepping is accomplished by inserting an off state between transitioning phases.

■ Can-Stack Stepper Motor Linear Actuators Options

TFE Coated Lead Screws for applications that require a permanent, dry lubricant


Ideal for applications where conventional oils and greases cannot be used for lead screw lubrication.

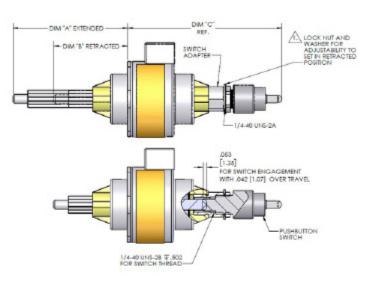
Non-lubricated TFE Coated Lead Screw provides improved performance in both life and thrust as compared to a "dry" stainless steel lead screw. TFE can be applied to a wide variety of lead screw pitches. Available captive, non-captive and external linear.

Typical applications: where contamination from grease or lubricants must be avoided; silicon wafer handling, clean rooms, medical equipment or laboratory instrumentation.

Lead Screw Comparison: FORCE vs. PULSE RATE

- L/R Drive - 100% Duty Cycle

Home Position Switch monitors movements more precisely for greater control and improved quality control


Miniature electronic home position switch capable of monitoring the home positions of linear actuators. The switch mounts on the rear sleeve of captive linear motors and allows the user to identify start, stop or home positions. Depending on your preference, contacts can be normally open or normally closed. The contact closure is repeatable to within one step position, identifying linear movements as low as 0.0005-in (0.0013 cm) per step. Multiple contact switches are also available.

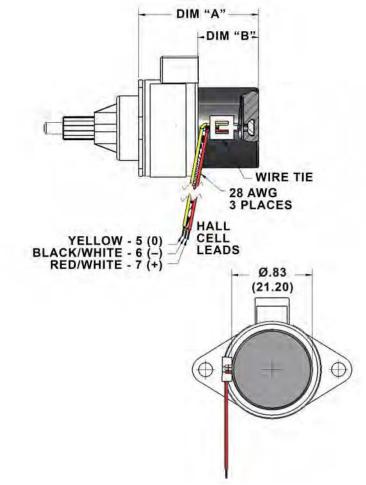
Activation force of 10 oz (2.78 N) required therefore may not be appropriate for smaller can-stack actuators.

When ordering motors with the home position switch, the part number should be preceded by an "S".

Specifications						
Contact Ratings (Standard)	1.00 AMP @ 120 VAC 1.00 AMP @ 28 VDC					
Operating Temperature	-30°C to +55°C (-22°F to 131°F)					
Electrical Life	< 20 milliohms typ. initial at 2 - 4 V DC, 100 mA Tested to 60,000 make-and-break cycles at full load					
Schematic	1 T 3 Multiple contact options available.					

Stroke inches (mm)	Dim "A" Extended inches (mm)	Dim "B" Retracted inches (mm)	Dim "C" Ref. inches (mm)
.512 (13)	1.329 +/025 (33.76 +/- 0.64)	.787 +/025 (19.99 +/- 0.64)	2.051 +/025 (52.09 +/- 0.64)
.708 (18)	1.743 +/025 (44.27 +/- 0.64	.994 +/025 (25.25 +/- 0.64)	2.258 +/025 (57.35 +/- 0.64)
.984 (25)	2.293 +/025 (58.24 +/- 0.64)	1.269 +/025 (32.23 +/- 0.64)	2.534 +/025 (64.37 +/- 0.64)
1.22 (31)	2.765 +/025 (70.23 +/- 0.64)	1.505 +/025 (38.23 +/- 0.64)	2.770 +/025 (70.37 +/- 0.64)

■ G4 25000 Series • Can-Stack Stepper Motor Linear Actuators


■ Can-Stack Stepper Motor Linear Actuators Options

End of Stroke Proximity Sensor incorporates a hall effect device, activated by a rare earth magnet embedded in the end of the internal screw

Compact profile of the sensor allows for installation in limited space applications. Virtually unlimited cycle life. Special cabling and connectors available.

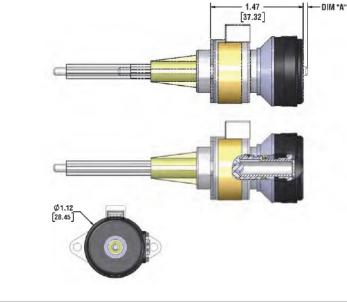
Specificati	ons		
Supply Vo	tage (VDC)	3.8 min. to 24 max.	
Current Co	onsumption	10 mA max.	
Output Voltage (operated)		0.15 typ., 0.40 max. Sinking 20 mA max.	
Output Current		20 mA max.	
	kage Current ased)	10µA max. @ Vout = 24 VDC; Vcc = 24 VDC	
Output Switching Rise, 10 to 90%		.05 μs typ., 1.5 μs max. @ Vcc = 12 V, RL = 1.6 KOhm	
Time	Fall, 90 to 10%	.15 μs typ., 1.5 μs max. @ CL = 20 pF	
Temperature		− 40 to +150°C	

Stroke inches (mm)	Dim "A" Extended inches (mm)	Dim "B" Retracted inches (mm)
.512 (13)	1.248 (31.71)	.632 (16.05)
.708 (18)	1.449 (36.81)	.833 (21.15)
.984 (25)	1.723 (43.76)	1.106 (28.10)
1.22 (31)	1.959 (49.76)	1.343 (34.10)

The sensor has virtually unlimited cycle life. Special cabling and connectors can also be provided.

G4 25000 Series E8T Encoder

G4 25000 Series E8T Transmissive Optical Encoder is designed to provide the digital quadrature encoder feedback for high volume, compact space applications.


- Resolutions from 180 to 720
- Single-ended / Differential
- Frequency response to 100 kHz
- Low power consumption, 5 V @ 30 mA max
- High retention polarized connector

172 **Haydon** kerk

Assembly Options:

- Differential line driver with complementary outputs
- Detachable cable
- Through-hole cover

Through holo oover			
Stroke inches (mm)	Dim "A" Extended inches (mm)		
.512 (13)	N/A		
.708 (18)	N/A		
.984 (25)	.071 (1.80)		
1.22 (31)	.307 (7.80)		

AMETEK

G4 37000 Series Ø 36 mm (1.4-in) Can-Stack Stepper Motor Linear Actuators

Outstanding durability and high performance. The G4 Series features high energy neodymium magnets and dual ball bearings.

Exceptionally high linear force-to-size ratio, ideal for precision motion

Multiple versions available

- Captive
- Non-Captive
- External Linear

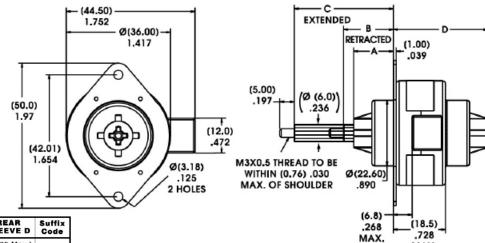
Ø 37mm (1.4-in) Non-Captive

Ø 37mm (1.4-in)) External Linear Ø 37mm (1.4-in

■ G4 37000 Series • Can-Stack Stepper Motor Linear Actuators

Specifications

•	opecinications				
	Ø 36 mm (1.4-in) Motor				
	Captive	3744 –	_ †	3754 –	- †
Part No.	Non-Captive	3734 –	_ †	3784 –	_ †
	External Linear	E3744 –	_ †	E3754 –	†
,	Wiring	Bipolar			
St	ep angle	7.5°		15°	
Wind	ing Voltage	5 VDC	12 VDC	5 VDC	12 VDC
Current	(RMS)/phase	561 mA	230 mA	561 mA	230 mA
Resist	tance/phase	8.9 Ω	52 Ω	8.9 Ω	52 Ω
Induct	tance/phase	11.6 mH	65 mH	8.5 mH	46 mH
Power	Consumption		5.6	S W	
Rot	tor Inertia	8.5 gcm ²			
Insulation Class B					
1	Weight	4.2 oz (120 g)			
Insulation	on Resistance	20 ΜΩ			


Lin	Order Code I.D.		
step	inches	mm	Gode I.D.
	0.0005	0.013	3
7.5° Angle	0.001	0.0254	1
7 tilgio	0.002	0.051	2
	0.001	0.0254	1
15° Angle	0.002	0.051	2
, anglo	0.004	0.102	4

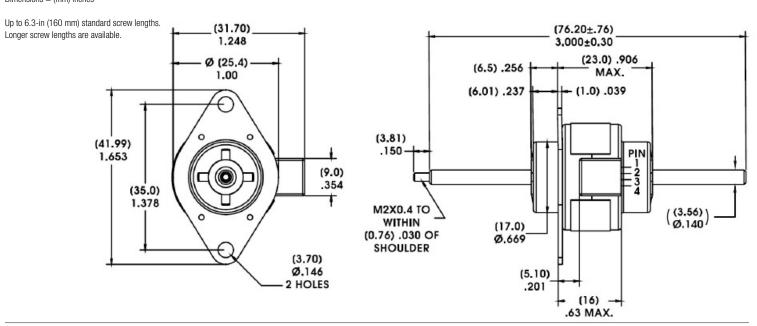
Special drive considerations may be necessary when leaving shaft fully extended or fully retracted. Standard motors are Class B rated for maximum temperature of 130° C (266° F).

†Part numbering information on page 159.

Captive Lead Screw

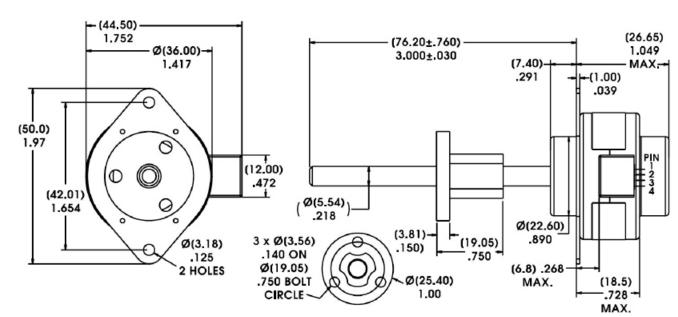
Dimensions = (mm) inches

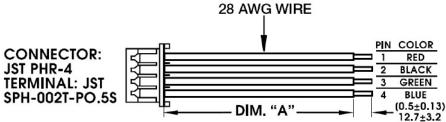
STROKE	FRONT	RETRACTED	EXTENDED	REAR	Suffix
(Minimum)	SLEEVE A	B	C	SLEEVE D	Code
(16.0 mm)	(13.67±0.25)	(17.19±0.64)	(34.24±0.38)	(33.85 Max.)	- 905
0.631	.538±.010	.677±.025	1.348±.015	1.333 Max.	
(25.4 mm)	(26.37±0.25)	(29.89±0.64)	(56.94±0.38)	(46.55 Max.)	- 910
1.00	1.038±.010	1.177±.025	2.348±.015	1.833 Max.	
(38.1 mm)	(39.07±0.25)	(42.59±0.64)	(85.04±0.38)	(59.25 Max.)	- 915
1.50	1.538±.010	1.677±.025	3.348±.015)	2.333 Max.	



G4 37000 Series • Can-Stack Stepper Motor Linear Actuators

Non-Captive Lead Screw

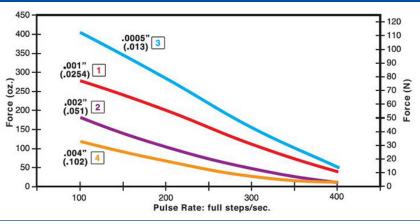

Dimensions = (mm) inches


External Linear

Dimensions = (mm) inches

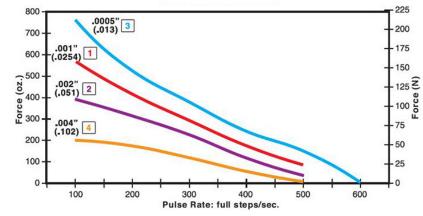
Up to 6.3-in (160 mm) standard screw lengths. Longer screw lengths are available.

Part Number	Dimension "A"
56-1436-1	(6.0 ± 0.39) 152 ±10 mm
56-1436-2	(12 ±0.39) 305 ±10 mm
56-1436-2	

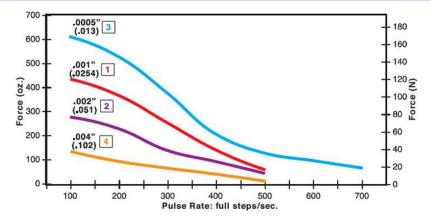


G4 37000 Series • Can-Stack Stepper Motor Linear Actuators

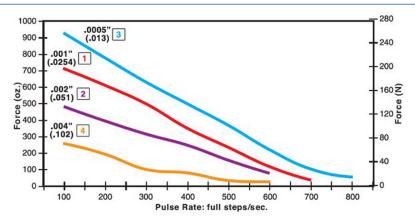
FORCE vs. PULSE RATE


- L/R Drive
- Bipolar
- 100% Duty Cycle

FORCE vs. PULSE RATE


- L/R Drive
- Bipolar
- 25% Duty Cycle

Obtained by a special winding or by running a standard motor at double the rated current.

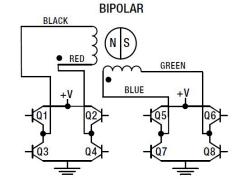

FORCE vs. PULSE RATE

- Chopper Drive
- Bipolar
- 100% Duty Cycle

FORCE vs. PULSE RATE

- Chopper Drive
- Bipolar
- 25% Duty Cycle

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply. Actuator bearings are rated for 75 lbs. Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.



Identifying the Can-Stack Number Codes when Ordering

			, ,		J	
E	37	4	4	2	05	1015
Prefix (include only when using the following) E = External	Series Number Designation 37 = 37000 (Series numbers represent approximate	Style 3 = 7.5° Non-Captive 4 = 7.5° Captive or	Coils 4 = Bipolar (4 wire)	Code ID Resolution Travel/Step 1 = .001-in (.0254) 2 = .002-in (.051) 3 = .0005-in (.013)	Voltage 05 = 5 VDC 12 = 12 VDC Custom V available	Suffix Stroke Example: -1015 = captive 38.1mm stroke with leads -XXX = Proprietary suffix assigned
 K = External with 40° thread form P = Proximity Sensor S = Home Position Switch 	diameters of motor body)	External (use "E" or "K" Prefix for External version) 5 = 15° Captive or External (use "E" or "K" Prefix for External version 8 = 15° Non-Captive		4 = .004-in (.102)		to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 203 756 7441.

Can-Stacks: Wiring

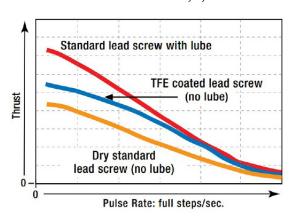
Can-Stacks: Stepping Sequence

	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8	
E	Step					
EXTEND	1	ON	0FF	ON	0FF	
CW-	2	OFF	ON	ON	OFF	CCW
	3	OFF	ON	OFF	ON	RETRACT
•	4	ON	OFF	OFF	ON	Æ
	1	ON	OFF	ON	OFF	

Note: Half stepping is accomplished by inserting an off state between transitioning phases.

■ Can-Stack Stepper Motor Linear Actuators Options

TFE Coated Lead Screws for applications that require a permanent, dry lubricant


Ideal for applications where conventional oils and greases cannot be used for lead screw lubrication.

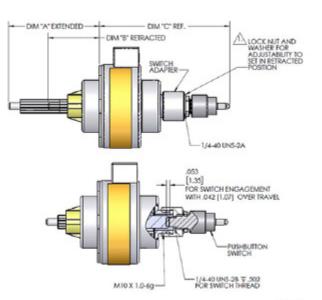
Non-lubricated TFE Coated Lead Screw provides improved performance in both life and thrust as compared to a "dry" stainless steel lead screw. TFE can be applied to a wide variety of lead screw pitches. Available captive, non-captive and external linear.

Typical applications: where contamination from grease or lubricants must be avoided; silicon wafer handling, clean rooms, medical equipment or laboratory instrumentation.

Lead Screw Comparison: FORCE vs. PULSE RATE

- L/R Drive - 100% Duty Cycle

Home Position Switch monitors movements more precisely for greater control and improved quality control

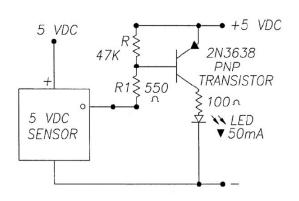

Miniature electronic home position switch capable of monitoring the home positions of linear actuators. The switch mounts on the rear sleeve of captive linear motors and allows the user to identify start, stop or home positions. Depending on your preference, contacts can be normally open or normally closed. The contact closure is repeatable to within one step position, identifying linear movements as low as 0.0005-in (0.0013 cm) per step. Multiple contact switches are also available.

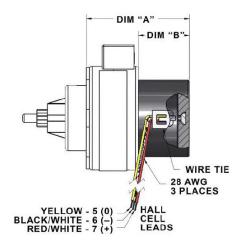
Activation force of 10 oz (2.78 N) required therefore may not be appropriate for smaller can-stack actuators.

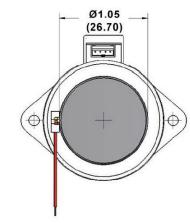
When ordering motors with the home position switch, the part number should be preceded by an "S".

Specifications	
Contact Ratings (Standard)	1.00 AMP @ 120 VAC 1.00 AMP @ 28 VDC
Operating Temperature	-30°C to +55°C (-22°F to 131°F)
Electrical Life	< 20 milliohms typ. initial at 2 - 4 V DC, 100 mA Tested to 60,000 make-and-break cycles at full load
Schematic	1 T 3 Multiple contact options available.

Stroke inches (mm)	Dim "A" Extended inches (mm)	Dim "B" Retracted inches (mm)	Dim "C" Ref. inches (mm)
.631 (16)	1.348 +/025	.677 +/025	2.218 +/025
	(34.24 +/- 0.64)	(17.19 +/- 0.64)	(56.33 +/- 0.64)
1.00 (25.4)	2.348 +/025	1.177 +/025	2.718 +/025
	(56.94 +/- 0.64)	(29.89 +/- 0.64)	(69.03 +/- 0.64)
1.50 (38.1)	3.348 +/025	1.677 +/025	3.218 +/025
	(85.04 +/- 0.64)	(42.59 +/- 0.64)	(81.73 +/- 0.64)




■ Can-Stack Stepper Motor Linear Actuators Options

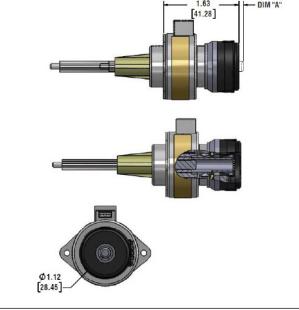

End of Stroke Proximity Sensor incorporates a hall effect device, activated by a rare earth magnet embedded in the end of the internal screw

Compact profile of the sensor allows for installation in limited space applications. Virtually unlimited cycle life. Special cabling and connectors available.

Specifications		
Supply Vol	tage (VDC)	3.8 min. to 24 max.
Current Co	onsumption	10 mA max.
Output Voltage (operated)		0.15 typ., 0.40 max. Sinking 20 mA max.
Output Current		20 mA max.
Output Leakage Current (released)		10µA max. @ Vout = 24 VDC; Vcc = 24 VDC
Output Switching	Rise, 10 to 90%	.05 µs typ., 1.5 µs max. @ Vcc = 12 V, RL = 1.6 KOhm
Time Fall, 90 to 10%		.15 μs typ., 1.5 μs max. @ CL = 20 pF
Tempe	erature	- 40 to +150°C

The sensor has virtually unlimited cycle life. Special cabling and connectors can also be provided.

G4 37000 Series E8T Encoder


G4 37000 Series E8T Transmissive Optical Encoder is designed to provide the digital quadrature encoder feedback for high volume, compact space applications.

- Resolutions from 180 to 720
- Single-ended / Differential
- Frequency response to 100 kHz
 Low power consumption, 5 V @ 30 mA max
- · High retention polarized connector

Assembly Options:

- Differential line driver with complementary outputs
- Detachable cable
- Through-hole cover

Stroke inches (mm)	Dim "A" Extended inches (mm)
.631 (16)	N/A
1.00 (25.4)	.098 (2.50)
1.50 (38.1)	.598 (15.20)

15000 Series Ø 15 mm (.59-in) Can-Stack Stepper Motor Linear Actuators

Delivering force of up to 8 lbs (35N) without compromising long life or cost. Lightweight models can also be micro- stepped for even finer resolution. Bi-directional travel motor. Available as connector stator or "space saving" flying leads type motor bodies.

The world's smallest commercial linear stepper motor

Multiple versions available

- Captive
- External Linear with free-wheeling BFW nut
- External Linear with ZBM anti-backlash nut* *May not be available in all leads

Specifications

oposinoutions					
	Ø 15 mm (.5	59-in) Motor			
Part No.	Captive LC1574 †				
r art No.	External Linear	External Linear LE1574 +			
Wiring		Bipolar			
Step angle		18°			
Winding Voltage	4 VDC	4 VDC 5 VDC 12 VDC			
Current (RMS)/phase	0.2 A	0.16 A	0.07 A		
Resistance/phase	20 Ω	31 Ω	180 Ω		
Inductance/phase	5.6 mH	8.7 mH	48.8 mH		
Power Consumption	1.6 W				
Rotor Inertia		0.09 gcm ²			
Insulation Class		Class B (Class F available)			
Weight	LC15 0.49 oz (14 g) LE15 0.39 oz (11 g)				
Insulation Resistance	20 ΜΩ				
Stroke	Captive	0.5-in. (1	12.7 mm)		
SHUKE	External Linear up to 1.79-in. (45.4 mm)				

■ 15000 Series • Can-Stack Stepper Motor Linear Actuators

Linear Tra	Order Code I.D.	
inches	mm	Gode I.D.
.00059*	.015	BZ**
.00079*	.02	W**
.00098*	.025	AQ**
.00197*	.05	BH
.00394*	.10	DC

^{*}Values truncated **Black Ice not available

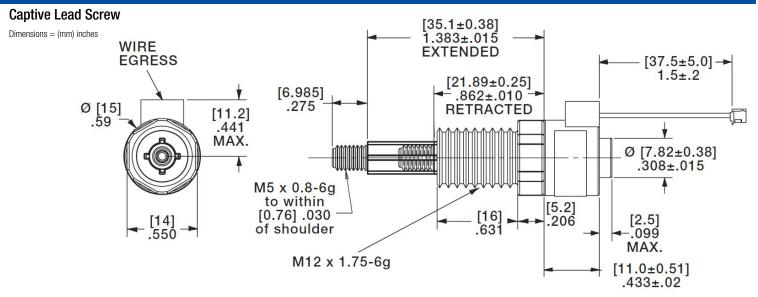
Available Standard Connectors for Series 15000								
Connector	PIN							
CONTINUECTOR	1	2	3	4				
JST PHR-4	Red	White	Green	Black				
Molex 51021-0400	Black	Green	White	Red				

Available Flying Leads				
Length	Order Code I.D. Suffix (add to end on I.D.)			
12 inches (304.8 mm)	-999			

Special drive considerations may be necessary when leaving shaft fully extended or fully retracted. Standard motors are Class B rated for maximum temperature of 130° C (266° F).

Identifying the Can-Stack Number Codes when Ordering

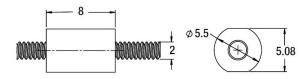
LC	15	7	4	W	04	999
Prefix	Series Number	Step Angle	Coils	Code ID Resolution	Voltage	Suffix
LC = Captive	Designation	7 = 18°	4 = Bipolar	Travel/Step	04 = 4 VDC	Stroke
LE = External	15 = 15000		(4 wire)	BZ = .00059-in (.015)	05 = 5 VDC	Example: $-999 = 12$ -in leads
Linear	(Series numbers			W = .00079-in (.02)	12 = 12 VDC	-XXX = Proprietary suffix assigned
	represent approximate			AQ = .00098 - in (.025)		to a specific customer application.
	diameters of			BH = .00197-in (.05)	Custom V available	The identifier can apply to either
	motor body)			DC = .00394-in (.10)	availabio	a standard or custom part.


NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 203 756 7441.

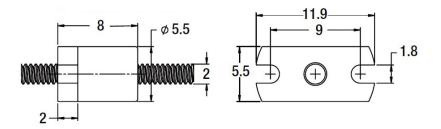
[†]Part numbering information below.

■ 15000 Series • Can-Stack Stepper Motor Linear Actuators

External Linear Ø [11.48±0.03] [37.5±5.0] Dimensions = (mm) inches .452±.001 WIRE 1.5±.2 EGRESS-M8 x 1-6g to within [1.9] .075 of shoulder Ø [15] [11.2].441 MAX. Ø [7.82±0.38] HOUSING: ▼ .308±.015 Ø [1.3] JST P-HR-4 Up to 2.36-in (59.9 mm) standard screw lengths. (or equivalent) [2.5] CONTACT: Consult factory for longer screws. 099 SPH-002T-PO.5 MAX. Stroke as shown: -[5.1]0.37" (9.4mm) (or equivalent) .200 [23.9] [11.0±0.51] .433±.02

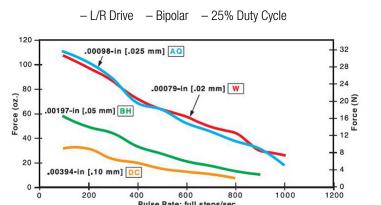

MICRO Series

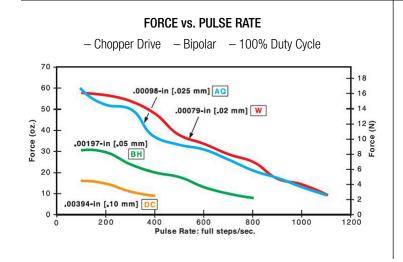
Dimensions = (mm) inches

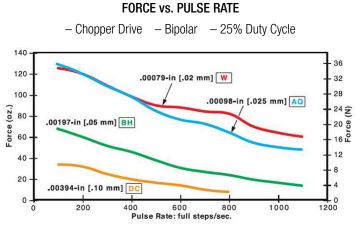

Standard nut styles. Consult the factory for custom solutions.

MICRO Series Nut Styles						
Part No. BFW Nut Style		Dynamic Load lbs (Kg)	Drag Torque oz-in (NM)			
BFWB	Barrel Mount	10 (4.5)	Free Wheeling			
BFWR	Rectangular Flange	10 (4.3)	Free writeeiiiig			

Barrel Nut Style

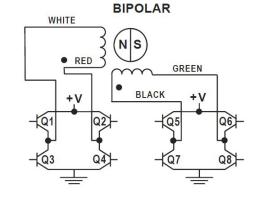

Rectangular Nut Style


■ 15000 Series • Can-Stack Stepper Motor Linear Actuators


FORCE vs. PULSE RATE

FORCE vs. PULSE RATE − L/R Drive − Bipolar − 100% Duty Cycle .00098-in [.025 mm] AQ .00079-in [.02 mm] W 00197-in [.05 mm] BH 20 -10 -.00394-in [.10 mm] DC 300 400 Pulse Rate: full s 100 200 500

Obtained by a special winding or by running a standard motor at double the rated current.

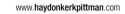


NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.

Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

15000 Series • Can-Stack Stepper Motor Linear Actuators Wiring & Stepping Sequence

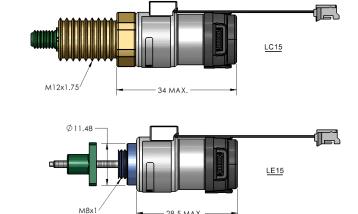
Can-Stacks: Wiring



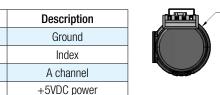
Can-Stacks: **Stepping Sequence**

	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8	
異	Step					1
EXTEND CW	1	ON	OFF	ON	OFF	
CW —	2	OFF	ON	ON	OFF	N.
	3	0FF	ON	0FF	ON	RETRACT
•	4	ON	OFF	0FF	ON] [[
	1	ON	OFF	ON	0FF	

Note: Half stepping is accomplished by inserting an off state between transitioning phases.


NEW! 15000 Series E16 Encoder

15000 Series E16 optical encoder is designed to provide A, B and Index digital quadrature signals for high volume, restricted space applications.


- Resolutions from 250/256 to 4000/4096
- Single-ended only
- Low power consumption, 5V @ 26mA max

Assembly Options:

- Detachable cable

Pin #	Description
1	Ground
2	Index
3	A channel
4	+5VDC power
5	B channel

Custom Free-Wheeling Nuts

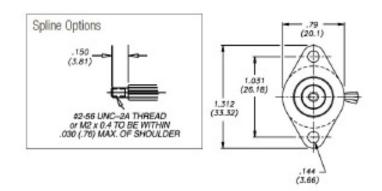
Modified and custom free-wheeling nuts are available for the LE external linear versions. Custom geometries and materials can be combined for a wide variety of product application requirements, to help eliminate additional adjacent components as well as to deliver cost and space-saving benefits.

Utilizing rare earth (neodymium) magnets, the Z-Series Linear Actuators consistently deliver exceptional performance at an economical price. Also available in a special "earless" configuration without a mounting flange, which is ideal for space constrained applications.

Economical motors for high volume applications

Multiple versions available

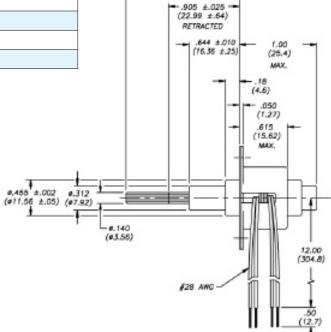
- Captive
- Non-Captive
- External Linear



Specifications

Ø 20 mm (.79-in) Z-Series Motor						
	Captive	Z2054 – – †				
Part No.	Non-Captive	Z2084 – – †				
	External Linear*	Z2054 – 9 †*				
Wiring	Bip	olar				
Step angle	15°					
Winding Voltage	5 VDC 12 VDC					
Current (RMS)/phase	250 mA 100 mA					
Resistance/phase	20 Ω 118 Ω					
Inductance/phase	5.4 mH 27 mH					
Power Consumption	2.5	5 W				
Rotor Inertia	1.13 gcm ²					
Insulation Class	Class B					
Weight	.85 oz. (24.1 g)					
Insulation Resistance	20	ΜΩ				

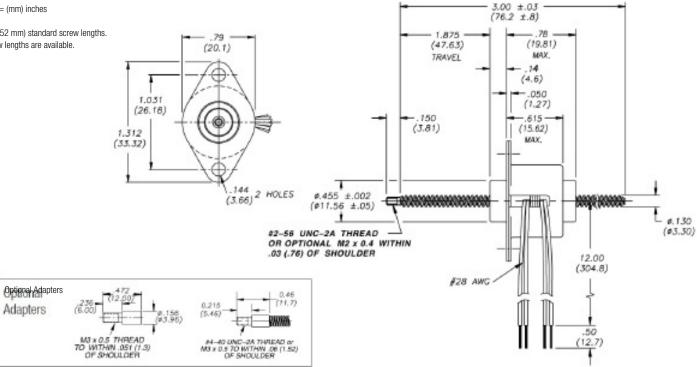
*Part numbering information on page 168.


*When ordering Z-Series External Linear motors, add -900 to end of the Part Number.

Linear Travel / Step 15° Step Angle		Order Code I.D.
inches mm		Oode I.D.
0.001	0.0254	1
0.002	0.051	2
0.004	0.102	4

Special drive considerations may be necessary when leaving shaft fully extended or fully retracted. Standard motors are Class B rated for maximum temperature of 130° C (266° F).

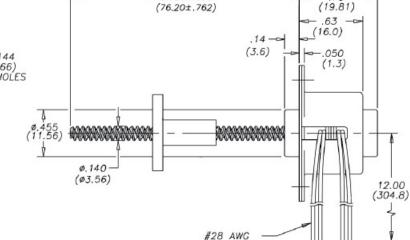
1,448 — (36.78) EXTENDED



Z20000 Series • Can-Stack Stepper Motor Linear Actuators

Non-Captive Lead Screw

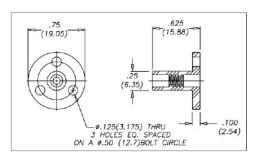
Dimensions = (mm) inches

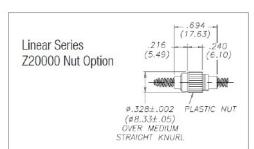

Up to 6-in (152 mm) standard screw lengths. Longer screw lengths are available.

External Linear

Dimensions = (mm) inches

- .79 -(20.1) Up to 6-in (152 mm) standard screw lengths. Longer screw lengths are available. (3.66) 2 HOLES (33.32)1.031 (26.18)

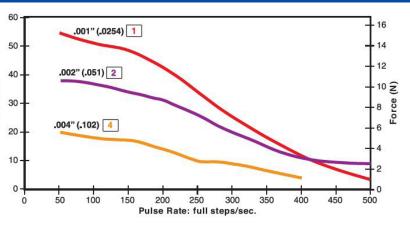



4 LEAD WIRES

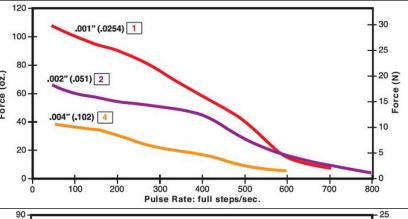
3.000±.030 ·

(19.81)

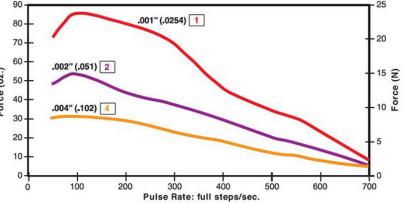
.50 (12.7)



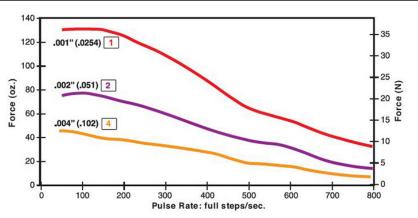
FORCE vs. PULSE RATE


- L/R Drive
- Bipolar
- 100% Duty Cycle

FORCE vs. PULSE RATE


- L/R Drive
- Bipolar
- 25% Duty Cycle

Obtained by a special winding or by running a standard motor at double the rated current.


FORCE vs. PULSE RATE

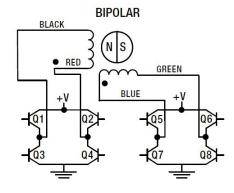
- Chopper Drive
- Bipolar
- 100% Duty Cycle

FORCE vs. PULSE RATE

- Chopper Drive
- Bipolar
- 25% Duty Cycle

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.

Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.



Identifying the Can-Stack Number Codes when Ordering

Z	20	5	4	2	05	900
Prefix Z = Series Code	Series Number Designation 20 = 20000 (Series numbers represent approximate diameters of motor body)	Style 5 = 15° Captive or External (use -900 Suffix for External version) 8 = 15° Non-Captive	Coils 4 = Bipolar (4 wire)	Code ID Resolution Travel/Step 1 = .001-in (.0254) 2 = .002-in (.051) 4 = .004-in (.102)	Voltage 05 = 5 VDC 12 = 12 VDC Custom V available	Suffix Stroke Example: –900 used to code Z-Series external linear -XXX = Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 203 756 7441.

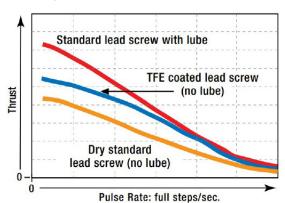
Can-Stacks: Wiring

Can-Stacks: **Stepping Sequence**

	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8	
E	Step					
EXTEND CW	1	ON	0FF	ON	0FF	
CW —	2	0FF	ON	ON	0FF	CCW
	3	OFF	ON	OFF	ON	RETRACT
•	4	ON	OFF	OFF	ON	뮨
	1	ON	OFF	ON	OFF	

Note: Half stepping is accomplished by inserting an off state between transitioning phases.

Can-Stack Stepper Motor Linear Actuators Options


TFE Coated Lead Screws for applications that require a permanent, dry lubricant

Ideal for applications where conventional oils and greases cannot be used for lead screw lubrication.

Non-lubricated TFE Coated Lead Screw provides improved performance in both life and thrust as compared to a "dry" stainless steel lead screw. TFE can be applied to a wide variety of lead screw pitches. Available captive, non-captive and external

Typical applications: where contamination from grease or lubricants must be avoided; silicon wafer handling, clean rooms, medical equipment or laboratory instrumentation.

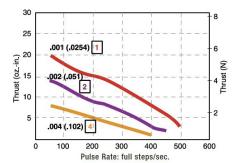
Lead Screw Comparison: FORCE vs. PULSE RATE - L/R Drive - 100% Duty Cycle

Z20000 Series Non-Captive

Can-Stack Stepper Motor Linear Actuators Options

Specially Engineered Can-Stack Linear Actuators for high temperature applications

Stepping motors specially designed for high temperature environments.

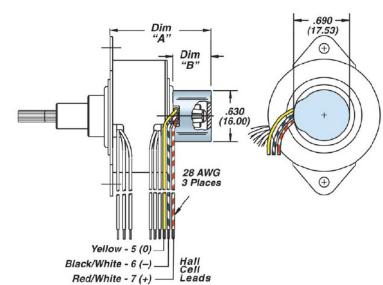

Materials meeting class F temperature ratings are used in construction. Specialized components include high temperature bobbins, coils, lead wires, lubricant and adhesives.

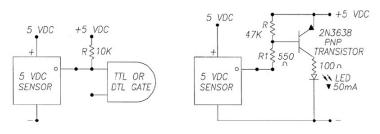
Home Position Switch monitors movements more precisely for greater control and improved quality control

Miniature electronic home position switch capable of monitoring the home positions of linear actuators. The switch mounts on the rear sleeve of captive linear motors and allows the user to identify start, stop or home positions. Depending on your preference, contacts can be normally open or normally closed. The contact closure is repeatable to within one step position, identifying linear movements as low as 0.0005-in (0.0013 cm) per step. Multiple contact switches are also available. Activation force of 10 oz (2.78 N) required therefore may not be appropriate for

smaller can-stack actuators.

When ordering motors with the home position switch, the part number should be preceded by an "S".




Specifications	
Contact Ratings (Standard)	1.00 AMP @ 120 VAC 1.00 AMP @ 28 VDC
Operating Temperature	-30°C to +55°C (-22°F to 131°F)
Electrical Life	< 20 milliohms typ. initial at 2 - 4 V DC, 100 mA Tested to 60,000 make-and-break cycles at full load
Schematic	1

End of Stroke Proximity Sensor incorporates a hall effect device, activated by a rare earth magnet embedded in the end of the internal screw

Compact profile of the sensor allows for installation in limited space applications. Virtually unlimited cycle life. Special cabling and connectors available.

Specification	ons				
Supply Vol	tage (VDC)	3.8 min. to 24 max.			
Current Co	onsumption	10 mA max.			
	Voltage ated)	0.15 typ., 0.40 max. Sinking 20 mA max.			
Output	Current	20 mA max.			
Output Leak (relea	kage Current ased)	10µA max. @ Vout = 24 VDC; Vcc = 24 VDC			
Output Switching	Rise, 10 to 90%	.05 μ s typ., 1.5 μ s max. @ Vcc = 12 V, RL = 1.6 KOhm			
Time	Fall, 90 to 10%	.15 μs typ., 1.5 μs max. @ CL = 20 pF			
Temperature		− 40 to +150°C			

NOTE: Sensor is category 2 ESD sensitive per DOD-STD-1686A. Assembly operations should be performed at workstations

www.haydonkerkpittman.com

Z26000 Series • Can-Stack Stepper Motor Linear Actuators

Z26000 Series Ø 26 mm (1-in) Can-Stack Stepper Motor Linear Actuators

Designed to accommodate high volume applications

Z26000 Series motors utilize rare earth (neodymium) magnets. Also, available in a special "earless" configuration without a mounting flange. All units are built with durable dual ball bearings.

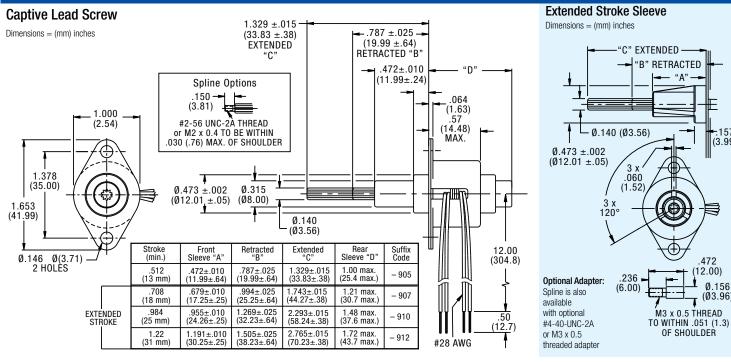
Multiple versions available

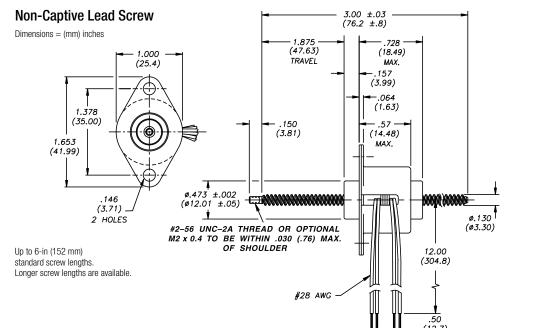
- Captive - Non-Captive - External Linear

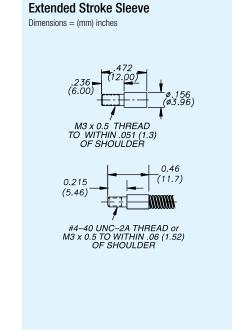
NOW AVAILABLE! Shorter motor body option available (see page 174)

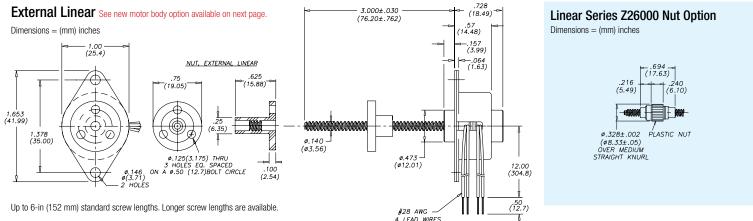
Specifications

ореспіса	Specifications										
				Ø 26 mm (1-in)	Z-Series Motor						
	Captive	Z2644 –	_ †	Z2654 –	†	Z2646 –	- †	Z2656 –	_ †		
Part No.	Non-Captive	Z2634 –	- †	Z2684 –		Z2636 –	- †	Z2686 –	- †		
	External Linear*	Z2644 –	- 9 †**	Z2654 –	-9 †**	Z2646 –	-9 †**	Z2656 –	- 9 †**		
	Wiring		Bip	olar			Unip	olar*			
	Step angle	7.	5°	15	5°	7.	5°	15°			
Winding Voltage		5 VDC	12 VDC	5 VDC	12 VDC	5 VDC	12 VDC	5 VDC	12 VDC		
Curre	nt (RMS)/phase	340 mA	140 mA	340 mA	140 mA	340 mA	140 mA	340 mA	140 mA		
Resi	istance/phase	14.7 Ω	84 Ω	14.7 Ω	84 Ω	14.7 Ω	84 Ω	14.7 Ω	84 Ω		
Indu	ictance/phase	8.5 mH	55 mH	6.7 mH	44 mH	4.3 mH	24 mH	3.4 mH	19 mH		
Powe	er Consumption				3.4	1 W					
R	lotor Inertia				1.4	gcm ²					
Ins	ulation Class	Class B									
	Weight				1.2 oz	(34 g)					
Insula	tion Resistance				20	MΩ					


*Part numbering information on page 4. *Unipolar drive gives approximately 40% less thrust compared to bipolar drive. ** When ordering Z-Series External Linear motors, add -900 to end of the Part Number.


	Linear Travel / Step 15° Step Angle									
step	inches	Code I.D.								
	0.0005	0.013	3							
7.5° Angle	0.001	0.0254	1							
7 (11910	0.002	0.051	2							
	0.00164	0.04166	AS							
15° Angle	0.002	0.051	2							
7 111910	0.004	0.102	4							

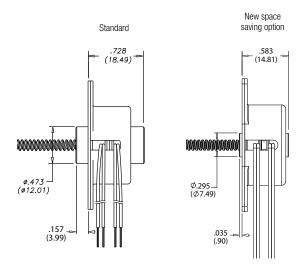

Special drive considerations may be necessary when leaving shaft fully extended or fully retracted. Standard motors are Class B rated for maximum temperature of 130° C (266° F).



Z26000 Series • Can-Stack Stepper Motor Linear Actuators

Maydon kerk

Z26000 Series • Can-Stack Stepper Motor Linear Actuators

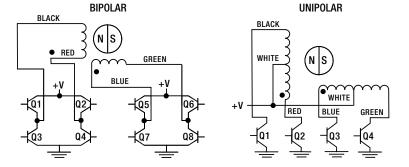


NOW AVAILABLE! Shorter External Linear Option

Designed to accommodate applications with space limitations

The Z26000 series now offers both the .728 and .583 motor body lengths with all existing Z26 motor advantages, including cost competitiveness and availability of customizations like rare earth magnets and earless options.

When ordering, the shorter motor option can be referenced using the last three suffix digits (-XXX).



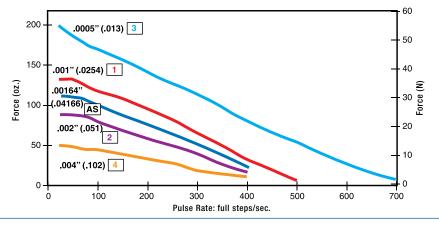
Identifying the Can-Stack Number Codes when Ordering

			, ,		•				
Z	26	4	4	2	05	900			
Prefix Z = Series Code	Series Number Designation 26 = 26000 (Series numbers represent approximate diameters of motor body)	Style 3 = 7.5° Non-Captive 4 = 7.5° Captive or External (use "E" or "K" Prefix for External version) 5 = 15° Captive or External (use "E" or "K" Prefix for External version 8 = 15° Non-Captive	Coils 4 = Bipolar (4 wire) 6 = Unipolar (6 wire)	Code ID Resolution Travel/Step 1 = .001-in (.0254) 2 = .002-in (.051) 3 = .0005-in (.013) 4 = .004-in (.102) AS = .04166-in (.00164)	Voltage 05 = 5 VDC 12 = 12 VDC Custom V available	Suffix Stroke Example: -900 used to code Z-Series external linear -XXX = Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.			

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 203 756 7441.

Can-Stacks: Wiring

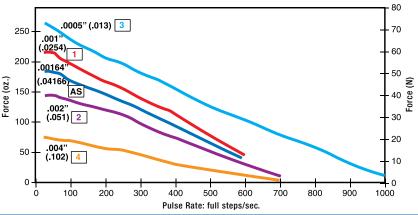
Can-Stacks: Stepping Sequence


						_					
	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8						
EXTEND	Step										
B	1	ON	OFF	ON	OFF	 ≽					
CW	2	OFF	ON	ON	OFF	MOO.					
	3	0FF	ON	0FF	ON	RETRACT					
₩	4	ON	OFF	0FF	ON						
	1	ON	OFF	ON	0FF] 🗀					

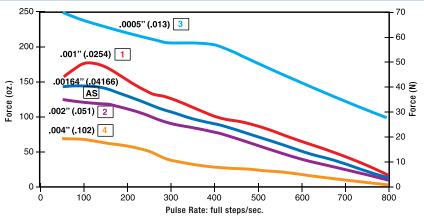
Note: Half stepping is accomplished by inserting an off state between transitioning phases.

Z26000 Series • Can-Stack Stepper Motor Linear Actuators

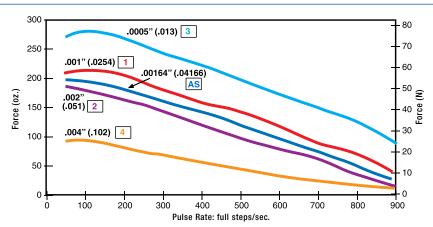
FORCE vs. PULSE RATE


- L/R Drive
- Bipolar
- 100% Duty Cycle

FORCE vs. PULSE RATE


- L/R Drive
- Bipolar
- 25% Duty Cycle

Obtained by a special winding or by running a standard motor at double the rated current.


FORCE vs. PULSE RATE

- Chopper Drive
- Bipolar
- 100% Duty Cycle

FORCE vs. PULSE RATE

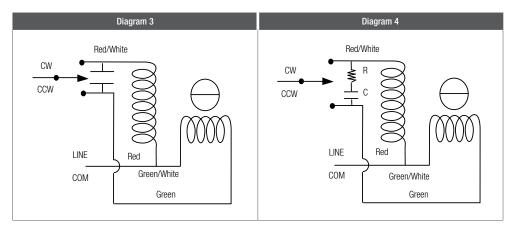
- Chopper Drive
- Bipolar
- 25% Duty Cycle

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.

Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

www.haydonkerkpittman.com

AC (Alternating Current) Synchronous Actuators


Stepping motors can also be run on AC (Alternating Current). However, one phase must be energized through a properly selected capacitor. In this case the motor is limited to only one synchronous speed. For instance, if 60 hertz is being supplied, there are 120 reversals or alterations of the power source. The phase being energized by a capacitor is also producing the same number of alterations at an offset time sequence. The motor is really being energized at the equivalent of 240 steps per second.

Alternating Current (AC) Hybrid Linear Actuators

Stepping motors can also be run on Alternating Current (AC). However, one phase must be energized through a properly selected capacitor. In this case, the motor is limited to only one synchronous speed.

For instance, if 60 hertz is being supplied, there are 120 reversals or alterations of the power source. The phase being energized by a capacitor is also producing the same number of alterations at an offset time sequence. The motor is really being energized at the equivalent of 240 steps per second.

In the case of a linear actuator the linear speed produced is dependent on the resolution per step of the motor. For example, if 60 hertz is supplied to a .001-in/step motor the resulting speed is .240-in per second (240 steps per second times .001-in/step). Many of our stepping motors are available as 300 or 600 RPM AC synchronous motors.

Electrical [Data							
Series	Size	Watts	Amno	Capacitor	Capacitor	Coil Resista	ance (Ohms)	Connection
Series	Size	walls	Amps	(Mfd) @ 60 Hz	(Mfd) @ 50 Hz	Main Wind.	Cap. Wind.	Diagram
35000	14	5.7	0.21	15	15	300	300	3
43000	17	6.5	0.27	15	15	104	104	3
57000	23	13.0	0.60	30	40	35	35	3
87000*	34	30.0	2.00	200	200	2.3	2.3	4

^{*} With 12 OHM, 100 watt resistor in series.

Identifying the AC Hybrid Part Number Codes when Ordering

Α	35	Н	4		N					
Prefix A = A Coil)	Series Number Designation 35 = 35000 (Size 14) 43 = 43000 (Size 17) 57 = 57000 (Size 23) 87 = 87000 (Size 34)	Style F = 1.8° Non-captive H = 1.8° Captive or External (use "E" or "K" Prefix for External version) J = 0.9° Non-captive K = 0.9° Captive or External (use "E" or "K" Prefix for External version)	Coils 4 = Bipolar (4 wire)	35000 and 43000 Series Code ID Resolution Travel/Step N = .00012-in (.0030) K = .00024-in (.0060) J = .00048-in (.0121) Q = .00096-in (.0243) P = .00015625-in (.0039) A = .0003125-in (.0079) B = .000625-in (.0158) C = .00125-in (.0317) R = .00192-in (.0478) High Resolution U = .00006-in (.0015) V = .000078-in (.00198)	57000 Series Code ID Resolution Travel/Step 7 = .000125-in (.0031) S = .0004167-in	87000 Series Code ID Resolution Travel/Step 3 = .0005-in (.0127) B = .000625-in (.0158) C = .00125-in (.0317) Y = .0025-in (.0635) Z = .005-in (.127)	Volt 24 24 \	=		Suffix -800 = External linear (added to Captive shaft part number) -XXX = Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 203 756 7441.

No other suffix is required.

Motor part numbers are for a captive shaft. For a non-captive shaft, change the middle letter from an "H" to an "F". Example 1: A35H4N-24 with a non-captive shaft becomes A35F4N-24.

For an external linear shaft, add the three digit suffix – 800 to the captive shaft part number.

Fyample 3: A35H4N-24 with an external linear shaft becomes A35H4N-24—800

Exception: A43K4U-24 (high resolution) and A43K4V-24 (High resolution), for a non-captive shaft substitute "J" in place of the "K". Example 2: A43K4U-24 with a non-captive shaft becomes A43J4U-24.

Example 3: A35H4N-24 with an external linear shaft becomes A35H4N-24–800.

All standard motors operate at 24 Volts, represented in the part number by the number – 24 (A35H4N-24).

AC Can-Stack Linear Actuators

Stepping motors can also be run on Alternating Current (AC). However, one phase must be energized through a properly selected capacitor. In this case, the motor is limited to only one synchronous speed.

For instance, if 60 hertz is being supplied, there are 120 reversals or alterations of the power source. The phase being energized by a capacitor is also producing the same number of alterations at an offset time sequence. The motor is really being energized at the equivalent of 240 steps per second.

In the case of a linear actuator the linear speed produced is dependent on the resolution per step of the motor. For example, if 60 hertz is supplied to a .001-in/ step motor the resulting speed is .240-in per second (240 steps per second times .001-in/step). Many of our stepping motors are available as 300 or 600 RPM AC synchronous motors.

240 Steps per Revolution x 60 Seconds 600 RPM 24 Steps per Revolution

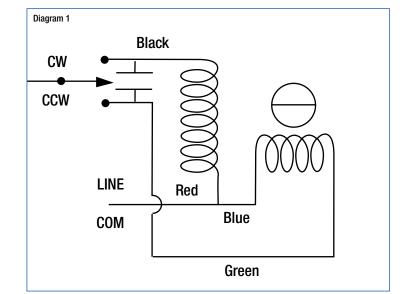
Identifying the AC Can-Stack Part Number Codes when Ordering

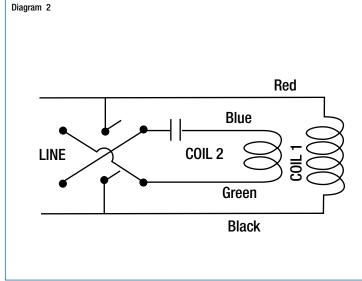
Α	35	5	4		2		24	800
Prefix A = A Coil Z = Economy Series (For 20000 and 26000) Series only)	Series Number Designation 20 = 20000 (Ø20mm, .79-in) 26 = 26000 (Ø26mm, 1-in) 36 = 36000 (Ø36mm, 1.4-in) 46 = 46000 (Ø46mm, 1.8-in)	Style 3 = 7.5° Non-Captive 4 = 7.5° Captive or External (use "E" or "K" Prefix for External version) 5 = 15° Captive or External (use "E" or "K" Prefix for External version 8 = 15° Non-Captive	Coils 4 = Bipolar (4 wire)	20000 and Z20000 Series Code ID Resolution Travel/Step 1 = .001-in (.0254) 2 = .002-in (.051) 4 = .004-in (.102)	26000 Series Code ID Resolution Travel/Step 1 = .001-in (.0254) 2 = .002-in (.051) 3 = .0005-in (.013) 4 = .004-in (.102) 9 = .00025-in (.00635) Z26000 Series Code ID Resolution Travel/Step 1 = .001-in (.0254) 2 = .002-in (.051) 3 = .0005-in (.013) 4 = .004-in (.102) AS = .04166-in (.00164)	36000 Series Code ID Resolution Travel/Step 1 = .001-in (.0254) 2 = .002-in (.051) 3 = .0005-in (.013) 4 = .004-in (.102) High Resolution 7 =000125-in (.0032) 9 = .00025-in (.00635) 46000 Series Code ID Resolution Travel/Step 1 = .001-in (.0254) 2 = .002-in (.051) 3 = .0005-in (.013) 4 = .004-in (.102) 8 =0008-in(.203) G = .016-in (.406)	Voltage 24 = 24 VDC	Suffix -800 = External linear (added to Captive shaft part number) -XXX = Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 203 756 7441.

Motor part numbers are for a captive shaft. For a non-captive shaft, change the third digit from a "4" to an "3". Example 1: A26441-24 with a non-captive shaft becomes A26341-24. Exception: When the third digit is "5" for a non-captive shaft substitute "8". Example 2: A26544-24 with a non-captive shaft becomes A26844-24.

For an external linear shaft, add the three digit suffix – 800 to the captive shaft part number. Example 3: A26441-24 with an external linear shaft becomes A26441-24 – 800. All standard motors operate at 24 Volts, represented in the part number by the suffix - 24 (A36443-24).





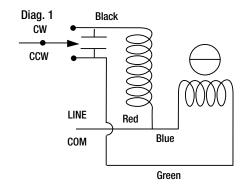
Motor Dout No	Linear Spe	ed @ 60 Hz	Linear Spe	ed @ 50 Hz	Maximu	m Force
Motor Part No.	(inches/sec.)	(cm/sec.)	(inches/sec.)	(cm/sec.)	(lbs.)	(Newtons)
Z20541-24-700	0.24	0.610	0.20	0.508	5.5	24
Z20542-24-700	0.48	1.219	0.40	1.016	3.0	13
Z20544-24-700	0.96	2.438	0.80	2.032	1.8	8
A26443-24	0.12	0.305	0.10	0.254	7.4	33
A26441-24	0.24	0.610	0.20	0.508	4.4	20
A26542-24	0.48	1.219	0.40	1.016	3.5	16
A26544-24	0.96	2.438	0.80	2.032	2.0	9
Z26443-24-700	0.12	0.305	0.10	0.254	13.0	58
Z26441-24-700	0.24	0.610	0.20	0.508	8.3	37
Z26542-24-700	0.48	1.219	0.40	1.016	6.6	29
Z26544-24-700	0.96	2.438	0.80	2.032	3.3	15
A36443-24**	0.12	0.305	0.10	0.254	16.0	71
A36441-24**	0.24	0.610	0.20	0.508	12.0	53
A36442-24**	0.48	1.219	0.40	1.016	6.0	27
A36544-24**	0.96	2.438	0.80	2.032	3.0	13
A46443-24**	0.12	0.305	0.10	0.254	43	191
A46441-24**	0.24	0.610	0.20	0.508	34	151
A46442-24**	0.48	1.219	0.40	1.016	20	89
A46544-24**	0.96	2.438	0.80	2.032	11	49
A46548-24**	1.92	4.877	1.60	4.064	5.4	24
A4654G-24**	3.84	9.754	3.20	8.128	2.7	12

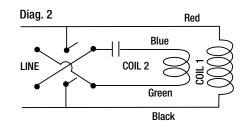
Specifications

Select motors available with 24 Volts or 120 Volts (replace 24 with 120).

NOTE: Capacitors not furnished with production units.

AC Synchronous Actuators - Rotary


AC Rotary Motors


Stepping motors can also be run on AC (Alternating Current). However, one phase must be energized through a properly selected capacitor. In this case the motor is limited to only one synchronous speed. For instance, if 60 hertz is being supplied, there are 120 reversals or alterations of the power source. The phase being energized by a capacitor is also producing the same number of alterations at an offset time sequence. The motor is really being energized at the equivalent of 240 steps per second.

Specifications

oposition and the same and the											
Motor Part No.	Rotary Speed (RPMs) @		Tor	Torque		Amps -	Capac	Capacitor @		Coil Resistance (Ohms)	
MOTOL PAIL NO.	60 Hz	50 Hz	oz-in	N-cm	Watts	Allips	60 Hz	50 Hz	Diagram	Main Wind	Cap. Wind
Z20540-24-700	600	500	0.5	0.4	2.5	.15	12.5	12.5	2	300	75
A26440-24	300	250	0.9	0.6	3.4	.20	15.0	15.0	2	214	54
A265540-24	600	500	0.9	0.6	3.4	.20	15.0	20.0	2	214	54
Z26440-24-700	300	250	1.2	0.8	3.4	.19	15.0	15.0	2	214	54
Z26540-24-700	600	500	1.5	1.1	3.4	.19	15.0	15.0	2	214	54
A36240-24	150	125	2.5	1.8	4.6	.23	20.0	20.0	2	160	40
A36440-24	300	250	2.6	1.8	4.6	.23	20.0	20.0	2	160	40
A36540-24	600	500	1.3	0.9	4.6	.23	20.0	20.0	2	160	40
A46440-24	300	250	8.5	6.0	10.0	.38	20.0	20.0	1	29	29
A46540-24	600	500	6.5	4.6	10.0	.38	20.0	25.0	1	58	58
A36240-120	150	125	2.5	1.8	4.6	.05	0.8	0.8	2	4000	1000
A36440-120	300	250	2.6	1.8	4.6	.05	0.8	0.8	2	4000	1000
A36540-120	600	500	1.3	0.9	4.6	.05	0.8	0.8	2	4000	1000
A46440-120	300	250	8.5	6.0	10.0	.08	0.8	0.8	1	725	725
A46540-120	600	600	6.5	4.6	10.0	.08	0.8	1.0	1	1450	1450

Capacitors not furnished (with production units).

Identifying the AC Rotary Motor Number Codes when Ordering

Z	26	5	4	0	24	700
Prefix	Series Number	Style	Coils	Code ID	Voltage	Suffix
$\mathbf{A} = A$ Coil	Designation	4 = 7.5°	4 = Bipolar	Resolution	24 = 24 VDC	-700 = indicates AC for Z Series motors
$\mathbf{Z} = Economy$	20 = 20000	5 = 15°	(4 wire)	Travel/Step	120 = 120VDC	-999 = Ball bearings
(For 20000 and 26000 Series, only use –700 suffix to identify AC motor)	(Ø 20 mm .79-in) 26 = 26000 (Ø 26 mm 1-in)			0 = Rotary Motor	Custom V for select 36000 and	-001 = Ball bearings for Z Series motors -000 = Sleeve bearings
, ,	36 = 36000 (Ø 36 mm 1.4-in)				46000 Series	-XXX = Proprietary suffix assigned to a specific customer application. Identifier can
	46 = 46000 (Ø 46 mm 1.8-in)					apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 203 756 7441.

www.haydonkerkpittman.com

AMETEK Haydon Kerk Pittman Stepper Motor Linear Actuator Customization

Haydon Kerk Pittman takes great pride in designing and developing customized solutions for your application needs.

Our Design and Development Engineers begin with our standard catalog products and build ideal solutions for your motion needs. Our factories bring your solutions into production.

Multi-axis Motion Systems

Haydon Kerk offers pre-engineered and customizable solutions for multi-axis positioning requirements, leveraging our core actuator and linear rail technologies to deliver optimized system performance. Our integrated solutions solve the motion application challenges for technology driven original equipment manufacturers (OEMs) around the globe.

Z-Theta

Designed for easy integration in OEM assemblies, the Haydon Kerk Z-Theta[™] offers linear + rotary point to point motion in an compact footprint. Unlike in-house component-up designs requiring engineering, multiple vendors and complex assembly integration, Z-Theta is a modular "bolt-in" package.

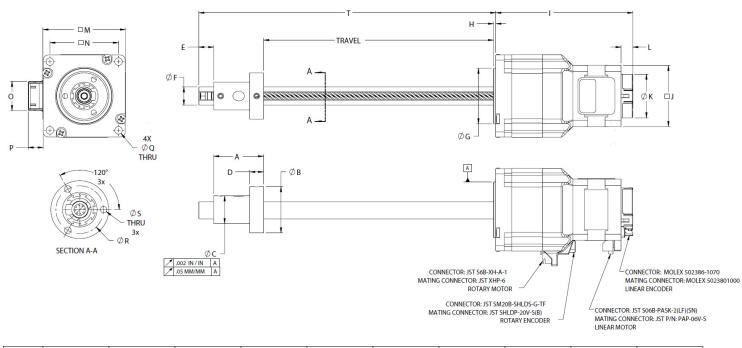
ZT04 Multi-Axis System

Performance in an Ultra-Compact 2-Axis Design

Designed for easy integration in OEM assemblies, the Haydon Kerk Z-Theta[™] offers linear + rotary point to point motion in a compact footprint. Unlike in-house component-up designs requiring engineering, multiple vendors and complex assembly integration, Z-Theta is a modular "bolt-in" package.

At the core of Z-Theta is the patented ScrewRail™, which combines guidance and linear transmission in a slender co-axial profile. Haydon Kerk's unique dual-motion integration with a pair of stepper motors adds rotary (theta) motion in manner that reduces motion system size by 50-80% as compared to alternative approaches, and less expensively than the equivalent components purchased separately.

The highly configurable Z-Theta provides flexibility, value, durability and performance suited for a host of lab automation, semiconductor and light factory automation applications. Performance is customized through a variety of leadscrew resolutions, available free-wheeling and anti-backlash nut selections, stepper motor configuration options, and optical encoder line counts.


- Easy integration into system design
- Pre-engineered modular design reduces supply chain and time to market
- Configuration options optimize performance for specific applications
- Compatible with a wide range of drive and controllers

Mechanical Specifications

ZT04: Size 23 Rotary Motor, Size 17 Linear Motor							
Stroke Length Limit	in [mm]	12 [305]					
Speed Limit	in/sec [mm/s]	6 [152]					
Axial Force Limit	lb-f [N]	15 [67]					
Load Limit (mass)	lb [kg]	5 [2.3]					
Moment Load	in-lb [NM]	15 [1.7]					
Torque, Theta Axis Motor	in-lb [NM]	3 [0.34]					
Nut Length	in [mm]	1.4 [36]					
Unit Height	in [mm]	Travel + 5.5 [140]					
Width, Mounting Flange	in [mm]	2.23 [57]					
Rail Material		Steel					
Rail Runout	in/in [mm/25mm]	0.002 [0.05]					
Rotary Repeatability (Open Loop)	in [mm]	+/-0.005 [0.13]					
Rotary Resolution (@6" Radius)	in [mm]	+/-0.0031 [0.08]					
Duty Cycle		100%					

ZT04 Linear Specifications										
Lead Code		E1	E2	E4	E6	E7				
Lead	in	0.050	0.100	0.250	0.500	1.00				
Leau	[mm]	[1.27]	[2.54]	[6.35]	[12.7]	[25.4]				
Nominal Screw Diameter	in			0.25						
Nominal Screw Diameter	[mm]	[6]								
May Drag Targua	oz-in	2.0	TBD	3.0	4.0	5.0				
Max Drag Torque	[NM]	[0.014]	טסו	[0.021]	[0.028]	[0.035]				
Torque to Move Load	oz-in/lb	0.5	TBD	1.5	2.5	4.5				
Torque to Move Load	[NM/Kg]	[0.004]	טסו	[0.011]	[0.018]	[0.32]				
Desclution (Open Lean)	in	0.00025	0.0005	0.00125	0.0025	0.005				
Resolution (Open Loop)	[mm]	[0.00625]	[0.0127]	[0.03175]	[0.0635]	[0.127]				

Dimensional Drawings

U	nits	Α	В	С	D	E	F	G	Н	1	J
	in	1.35 ± .01	1.250 ± .005	.750 ± .005	.375 ± .005	.40 ± .01	.489492	1.498 - 1.500	.06 ± .01	3.7 ± .1	1.65 ± .01
r	mm	34.29 ± 0.25	31.75 ± 0.13	19.05 ± 0.13	9.53 ± 0.13	10.16 ± 0.25	12.42 - 12.50	38.05 - 38.1	1.52 ± 0.25	93.98 ± 2.54	41.91 ± 0.25
								044		0++	

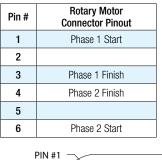
Units	К	L	M	N	0	P	Q**	R	S**	Т
in	1.18 ± .02	.32 ± .02	2.23 ± .02	1.856 ± .005	.7981	.4143	.205 ± .005	1.030 ± .005	.140 ± .005	= Travel + E +A+H (± .040)
mm	29.97 ± 0.51	8.13 ± 0.51	56.64 ± 0.51	47.14 ± 0.13	20.07 - 20.57	10.41 - 10.92	5.21 ± 0.13	26.16 ± 0.13	3.56 ± 0.13	= Travel + E +A+H (± 1)

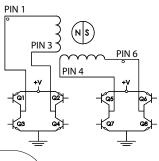
^{**} Tapped holes also available

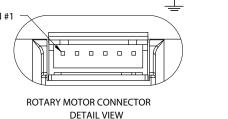
Identifying the Z-Theta Part Number Codes when Ordering

ZT	04	A	К	В	Α	J	Α	Α	E1	FY06
Prefix ZT = Z-Theta	Nominal Rail Size 04 = 1/2 in (13mm)	Nut Style A = Free-wheeling B = Anti-backlash	Coating S = Uncoated K = Kerkote®	Motors Frame Size B = Step- pers, Size 23 Rotary, Size 17 Linear	Rotary Motor A = 1.8°, 3.25VDC, Bipolar coils (4 wire) B = 1.8°, 5VDC, Bipolar coils (4 wire)	Rotary Motor Encoder J = 12000 CPR X = No Encoder	Linear Motor A = 1.8°, 2.33VDC, Bipolar coils (4 wire) B = 1.8°, 5VDC, Bipolar coils (4 wire)	Linear Motor Encoder A = 500 CPR C = 1000 CPR E = 2000 CPR X = No Encoder	Nominal Leadscrew Thread E1 = .050-in (1.27mm E2 = .100-in (2.54mm) E4= .250-in (6.35mm) E6= .500-in (12.7mm) E7= 1.00-in (25.4mm)	Stroke / Unique Identifier Xxx = Unique identifier

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 203 756 7441.



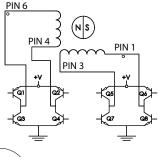


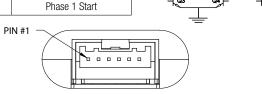


Connector Pinouts: Rotary

Pin #	Rotary Encoder Connector Pinout
1 - 8	Not used
9	DCOM**
10	Not used
11	VDD**
12	Chan. A+
13	Not used
14	Chan. B-
15	DGND
16	Chan. B+
17	+5V
18	Index-
19	Chan. A-
20	Index+

-PIN #20

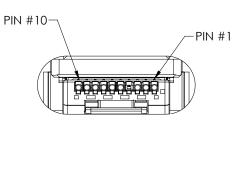

PIN #2


**Connects to EMI Filter Circuit

Linear Encoder

■ Connector Pinouts: Linear

Pin #	Linear Motor Connector Pinout
1	Phase 2 Start
2	
3	Phase 2 Finish
4	Phase 1 Finish
5	
6	Phase 1 Start


LINEAR MOTOR CONNECTOR **DETAIL VIEW**

Motor Specifications: Rotary

Size 23: 57 mm (2.3 inch) Hybrid Rotary Stepper Motor (1.8° Step Angle)								
Motor Ordering Code	Α	В	С					
Stack Length		Single						
Wiring		Bipolar						
Winding Voltage	3.25 VDC	5 VDC	12 VDC					
Commont/abose	0.0 4 *****	1 O Arma	540					
Current/phase	2.0 Arms	1.3 Arms	mArms					
Resistance/phase	1.63 Ω	3.85Ω	22.2Ω					
Inductance/phase	3.5 mH	10.5 mH	58 mH					
Holding Torque	8.5 kg-cm							
Power Consumption	13 W Total							
Insulation Class	Class B							
Insulation Resistance		20 MΩ						

[†]Part numbering information on page 192

Pin# **Connector Pinout** 1 GND 2 Vcc +5VDC 3 Index-4 Not used 5 Chan. A-6 Chan. A+ Chan. B+ 8 Chan. B-9 Index+ 10 Motor Ground

Motor Specifications: Linear

Size 17: 43 mm (1.7 inch) Hybrid Rotary Stepper Motor (1.8° Step Angle)							
Motor Ordering Code	A B C						
Stack Length		Single					
Wiring		Bipolar					
Winding Voltage	2.33 VDC 5 VDC 12 V						
Current/phase	1.5 A	700 mA	290 mA				
Resistance/phase	1.56 Ω	7.2 Ω	41.5 Ω				
Inductance/phase	1.9 mH 8.7 mH 54.0 mH						
Power Consumption		7 W					
Rotor Inertia	37 gcm2						
Insulation Class	Class	B (Class F ava	ailable)				
Insulation Resistance		20 MΩ					

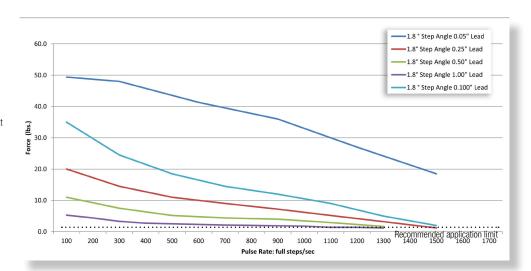
[†]Part numbering information on page 192

Performance Curves

SPEED vs. LINEAR FORCE (LINEAR MOTION)

- Chopper
- Bipolar
- 100% Duty Cycle

*Care should be taken when utilizing these screw pitches to ensure that the physical load limits of the motor are not exceeded. Please consult the factory for advice in selecting the proper pitch for your application.

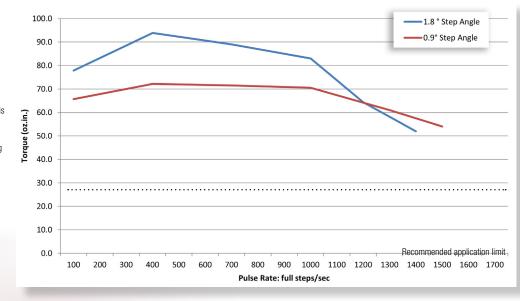

NOTE: 5 volt motor and 40 Vdc power supply (8:1 voltage ratio), X axis is Speed (Full-steps/sec), Y axis is Force (lbs)

The maximum step rate shown for each type of motor is the highest no-load start speed.

Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.

Loading is on axis with nut.

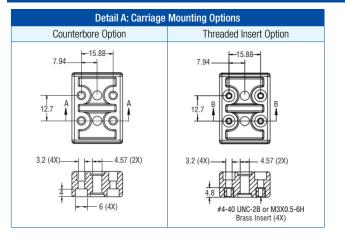


SPEED vs. PULL-OUT TORQUE (ROTARY MOTION)

- Chopper
- Bipolar
- 100% Duty Cycle

NOTE: 5 volt motor and 40 Vdc power supply (8:1 voltage ratio), X axis is Speed (Full-steps/sec), Y axis is Torque (oz-in).

Ramping can increase the performance f a motor by either increasing the top speed or getting a heavier load up to speed faster. Also, deceleration can be used to stop the motor without overshoot.


Linear Rail Systems

Haydon Kerk offers both motorized and non-motorized linear rails, guides and splines that deliver enhanced system stability, high positional accuracy, low friction and long life for a variety of linear motion applications.

Mini Motorized Slides

The compact, low profile MiniSlide[™] saves engineering time. Perfect for small lab, medical equipment and optical stage applications. Highly configurable mini slide assemblies offer 2 motor options, 9 different lead screw options, 4 different lubrication options, as well as English or Metric standards.

Wiring: Bipolar

Bipolar Q2-Q3 Q1-Q4 Q6-Q7 Q5-Q8 Step

ON

ON

OFF

OFF

Note: Half stepping is accomplished by inserting an off state

ON

ON

OFF

OFF

ON

OFF

OFF

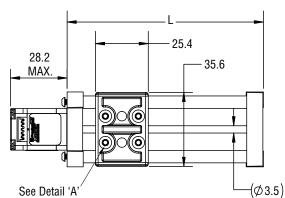
ON

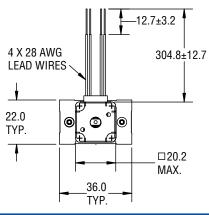
0N 5

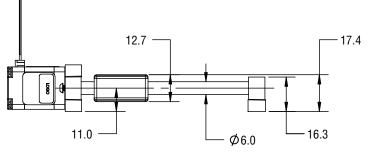
OFF H

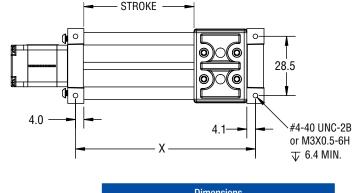
RED / WHITE

ON

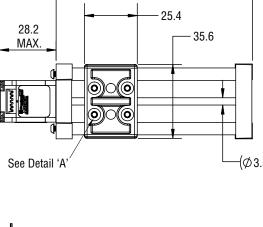

OFF

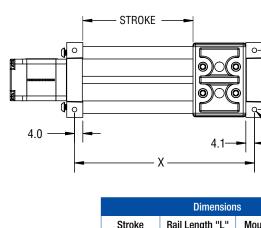

OFF


ON


ON

between transitioning phases.





Maydon(kerk)

	Dimensions								
Stroke	Rail Length "L"	Mounting Holes "X"							
25 mm	69.4 mm	61.5 mm							
50 mm	94.4 mm	86.5 mm							
75 mm	119.4 mm	111.5 mm							
100 mm	144.4 mm	136.5 mm							

	Dimensions						
Stroke	Rail Length "L"	Mounting Holes "X"					
25 mm	69.4 mm	61.5 mm					
50 mm	94.4 mm	86.5 mm					
75 mm	119.4 mm	111.5 mm					
100 mm	144.4 mm	136.5 mm					

Ordering Part Numbers for MiniSlide™ motorized with Size 8 Hybrid Stepper Actuator

MSA	02	К -	— н	0	020	_	XXX
Prefix	Frame Size	Coating	Motor	Nominal Thr	ead Lead Code		Suffix
MSA = Mini Slide Actuator	02 = 1/8" Screws	K = TFE Kerkote B = TFE Black Ice G = Grease S = No Lubricant	H = Size 8 Hybrid Stepper Linear Actuator	0020 = 1/2mm lead 0039 = 1mm lead 0079 = 2mm lead 0157 = 4mm lead 0315 = 8mm lead	0012 = 0.012" lead 0024 = 0.024" lead 0048 = 0.048" lead 0096 = 0.096" lead		805 = 50mm stroke M3 mounting 810 = 100mm stroke M3 mounting 905 = 50mm stroke #4-40 mounting 910 = 100mm stroke #4-40 mounting XXX = Unique identifier *
IOTE: Dashes must	t be included in the Part I	Number (-) as shown above. For	r assistance call our Engineering	Team at 203 756 7441.			

* Unique Identifier can be used to indicate additional options and/or product modifications.

Exceedingly configurable, simple to integrate MiniSlide™ assembly

is ideally suited for small lab and automation equipment.

MiniSlide Load Specifications

2.3kg [5 lbs]

45N [10 lbf]

1.13N-m [10 lbf-in]

1.13N-m [10 lbf-in]

0.56N-m [5 lbf-in]

 $+/-25\mu m$ [0.001 in]

Small step resolution with 1.8° step angle

Compact, low profile Super efficient motor

High power density and force

Encoder or encoder-ready options

Design Payload (mass)

Axial Force

Roll Moment*

Pitch Moment*

Yaw Moment*

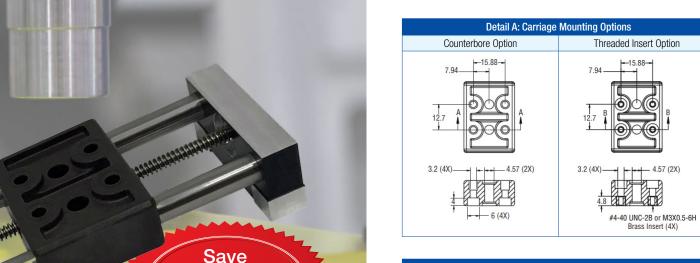
Repeatability

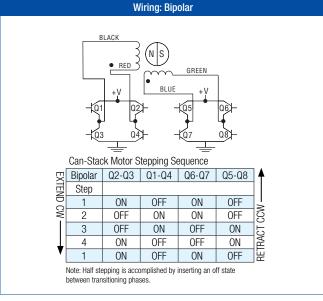
* Moment data based on 0.5° deflection

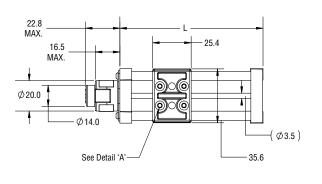
Size 8 Hybrid Stepper Linear Actuator: 21 mm (0.8-in) (1.8° Step Angle) Wiring Bipolar 5 VDC 7.5 VDC Winding Voltage 2.5 VDC Current (RMS)/phase .24 A .16 A 5.1 Ω $20.4\,\Omega$ 45.9Ω Resistance/phase Inductance/phase 1.5 mH 5.0 mH 11.7 mH **Power Consumption** 2.45 W Rotor Inertia 1.4 gcm² Class B (Class F available) **Insulation Class** Weight 1.5 oz (43 g) **Insulation Resistance** $20~\mathrm{M}\Omega$

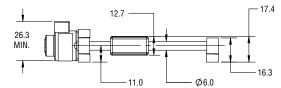
MiniSlide is also available with 20mm Can-Stack Motor.

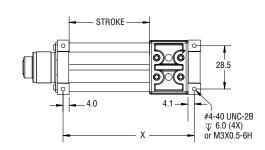
Performance Curves

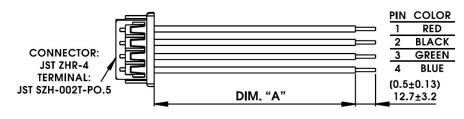

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply. Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot. With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.







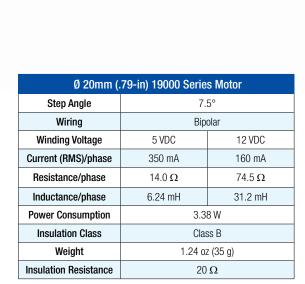

#4-40 UNC-2B



Dimensions									
Stroke	Rail Length "L"	Mounting Holes "X"							
25 mm	69.4 mm	61.5 mm							
50 mm	94.4 mm	86.5 mm							
75 mm	119.4 mm	111.5 mm							
100 mm	144.4 mm	136.5 mm							

	Dimensions								
Stroke	Rail Length "L"	Mounting Holes "X"							
25 mm	69.4 mm	61.5 mm							
50 mm	94.4 mm	86.5 mm							
75 mm	119.4 mm	111.5 mm							
100 mm	144.4 mm	136.5 mm							

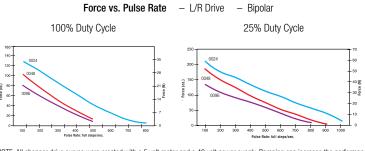
Connector

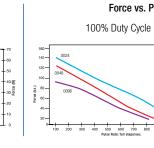

Part Number	Dimension "A"
56-1318-4	(24 ±0.39) 610 ±10 mm
56-1318-3	(18 ±0.39) 450 ±10 mm
56-1318-2	(12 ±0.39) 305 ±10 mm
56-1318-1	(6 ±0.39) 150 ±10 mm

Maydon(kerk)

Ordering Part Numbers for MiniSlide™ motorized with 19000 Series Can-Stack Motor

MSA	02	K	—	С	00	020	_	XXX
Prefix	Frame Size	Coating		Motor	Nominal Thre	ead Lead Code	•	Suffix
MSA = Mini Slide Actuator	02 = 1/8" Screws	K = TFE KerkoteB = TFE Black IceG = GreaseS = No Lubricant		C = 20mm G4 19000 Can-Stack Stepper Motor	0020 = 1/2mm lead 0039 = 1mm lead 0079 = 2mm lead 0157 = 4mm lead 0315 = 8mm lead	0012 = 0.012" lead 0024 = 0.024" lead 0048 = 0.048" lead 0096 = 0.096" lead		805 = 50mm stroke M3 mounting 810 = 100mm stroke M3 mounting 905 = 50mm stroke #4-40 mounting 910 = 100mm stroke #4-40 mounting XXX = Unique identifier *


NOTE: Dashes must be included in the Part Number (-) as shown above. For assistance call our Engineering Team at 203 756 7441. * Unique Identifier can be used to indicate additional options and/or product modifications.



Can-Stack Motor MiniSlide

MiniSlide is also available with Size 8 Hybrid Stepper Linear Actuator.

Performance Curves

new

MiniSlide™

motorized with

small size, big power

Design Payload (mass)

Axial Force

Roll Moment^{*}

Pitch Moment*

Yaw Moment*

Repeatability

* Moment data based on 0.5° deflection

Compact, low profile

Economically priced

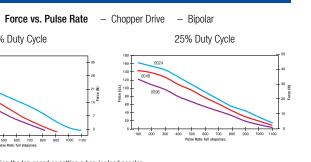
Can-Stack Stepper

Exceedingly configurable, simple to integrate MiniSlide™ assembly

is ideally suited for small lab and automation equipment.

MiniSlide Load Specifications

2.3kg [5 lbs]


45N [10 lbf]

1.13N-m [10 lbf-in]

1.13N-m [10 lbf-in]

0.56N-m [5 lbf-in]

+/-25µm [0.001 in]

Engineering Time!

NOTE; All chopper drive curves were created with a 5 volt motor and a 40 volt power supply. Ramping can increase the performance of a motor either by increasing the too speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot. With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.

Ball Guided Rail Systems

The BGS Linear Rail combines many technologies into a single integrated linear motion platform. The system provides excellent load capability and is engineered for both normal and overhanging loads. High roll, pitch, and yaw moment loading capability allows the system to maintain tight accuracy and repeatability, even in applications requiring significant cantilevered loading. The lead screw drives a machined aluminum carriage mounted to a precision stainless steel ball rail resulting in a rigid, smooth-operating motion system. Offers an optional wear-compensating anti-backlash driven carriage. Black Ice® TFE coated screw provides a permanent wear-resistant dry lubrication.

When integrated with an IDEA Drive, the system combines Haydon hybrid linear actuator technology with a fully programmable, integrated stepper motor drive. By combining technologies into a single preassembled unit, Haydon Kerk Motion Solutions is able to improve system integration for the equipment OEM or end user. The overall cost for the customer is also lowered by offering a complete solution as it eliminates the need for rotary-to-linear conversion, and simplified product development.

BGS Linear Rails with Recirculating Ball Slide

A BGS Motorized Linear Rail combines multiple technologies into a single integrated linear motion platform. The system provides excellent load capacity and is engineered for both normal and overhanding loads. High roll, pitch

and yaw moment loading capability allows the system to maintain tight accuracy and repeatability, even in applications requiring significant cantilevered loading.

At the heart of the BGS Linear Rail system is a Haydon hybrid linear actuator with a precision 303 stainless steel lead screw. The lead screw drives a

machined aluminum carriage mounted to a precision stainless steel ball slide resulting in a rigid, smooth operating motion system. The screw is coated with Black Ice® TFE coating providing a permanent wear-resistant dry lubrication

	OCC CONTRACTOR		0000
	BGS04	BGS06	BGS08
Hybrid Linear Actuator Motor	Size 11 Double Stack	Size 17 Single Stack*	Size 23 Single Stack*
	Size 17 Single Stack*	Size 17 Double Stack*	Size 23 Double Stack
Max. Stroke Length	18-in (460 mm)	24-in (610 mm)	30-in (760 mm)
Max. Load (Horizontal)**	22 lbs (100 N)	135 lbs (600 N)	225 lbs (1,000 N)
Roll Moment	5.72 lbs-ft (7.75 N-m)	11.62 lbs-ft (15.75 N-m)	22.50 lbs-ft (30.5 N-m)
Pitch Moment	4.88 lbs-ft (6.60 N-m)	7.93 lbs-ft (10.75 N-m)	19.36 lbs-ft (26.25 N-m)
Yaw Moment	5 68 lbs-ft (7 70 N-m)	9 15 lbs-ft (12 40 N-m)	22 27 lbs-ft (30 20 N-m)

Yaw Moment			5.68 lbs-ft (7.70 N-m)	9.15 lbs-ft (12.40 N-m)	22.27 lbs-ft (30.20 N-m)
Nominal T	hread Lead	Lead			
inches	mm	Code	BGS04	BGS06	BGS08
0.025	0.635	0025	•		
0.039	1.00	0039	•		
0.050	1.27	0050	•	•	
0.0625	1.59	0063	•		
0.079	2.00	0079	•	•	
0.098	2.5	0098			•
0.100	2.54	0100	•	•	•
0.118	3.00	0118	•		
0.125	3.18	0125			
0.157	4.00	0157		•	
0.197	5.00	0197		•	•
0.200	5.08	0200	•	•	•
0.250	6.35	0250	•	•	
0.315	8.00	0315			
0.375	9.53	0375		•	
0.394	10.00	0394	•		
0.400	1.016	0400		•	
0.472	12.00	0472		•	
0.500	12.70	0500	•	•	•
0.630	16.00	0630			•
0.750	19.05	0750	•	•	
0.984	25.00	0984		•	
1.000	25.40	1000	•	•	•
1.200	30.48	1200		•	

Size 11 = 28000 Series | Size 17 = 43000 Series | Size 23 = 57000 Series

^{*}Size 17 (43000 Series) Single and Double Stack Hybrid Linear Actuator Stepper Motors (BGS06) are available with an optional programmable IDEA™ Drive. IDEA Drives are not available in the BGS08 Linear Rail.

**For vertical load information, see specifications for the Size 11(28000 Series), Size 17 (43000 Series), and Size 23 (57000 Series) motors.

210

BGS04™ Linear Rail

■ Specifications: BGS04

BGS with Hybrid Linear Actuator Motor	Size 11 Double Stack Size 17 Single Stack*
Max. Stroke Length	18 in (460 mm)
Max. Load (horizontal)	22 lbs (100 N)
Roll Moment	5.72 lbs-ft (7.75 Nm)
Pitch Moment	4.88 lbs-ft (6.60 Nm)
Yaw Moment	5.68 lbs-ft (7.70 Nm)

^{*} Size 17 is available with an optional programmable IDEA™ Drive.

Nominal T	hread Lead	Lead Code
inches	mm	Leau Coue
0.025	0.635	0025
0.039	1.00	0039
0.050	1.27	0050
0.0625	1.59	0063
0.079	2.00	0079
0.100	2.54	0100
0.118	3.00	0118
0.200	5.08	0200

Nominal T	hread Lead	Lead Code	Nominal T	hread Lead	Lead Code
inches	mm	Leau Coue	inches	mm	Leau Coue
0.025	0.635	0025	0.250	6.35	0400
0.039	1.00	0039	0.394	10.00	0472
0.050	1.27	0050	0.500	12.70	0500
0.0625	1.59	0063	0.750	19.05	0750
0.079	2.00	0079	1.000	25.40	1000
0.100	2.54	0100			
Λ 118	3.00	0118			

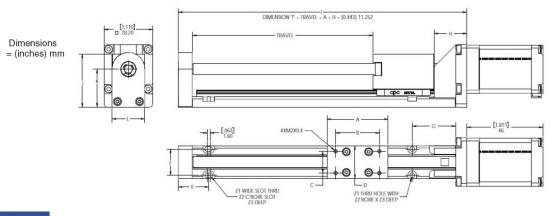
To determine what is best for your application see the Linear Rail Applications Checklist.

Identifying the BGS Part Number Codes when Ordering

BG	S	04	В	_	M	_	0025	_	XXX
Prefix	Frame Style	Frame Size Load*	Lubrication		Drive / Mounting		Nominal Thread Lead Code		Unique Identifier
BG = Ball Guide System	S = Standard	04 = Max.static load 22 lbs (100 N)	B = TFE wear resist, dry lubricant Black Ice®		M = Motorized For 43000 Series Size 17 Only G = IDEA TM integrated programmable drive - USB communications J = IDEA TM integrated programmable drive - RS485 communications		0025 = .025-in (.635) (see Lead Code charts above)		Suffix used to identify Size 11 or Size 17 motor - or a proprietary suffix assigned to a specificustomer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (–) as shown above. For assistance call our Engineering Team at 603 213 6290.

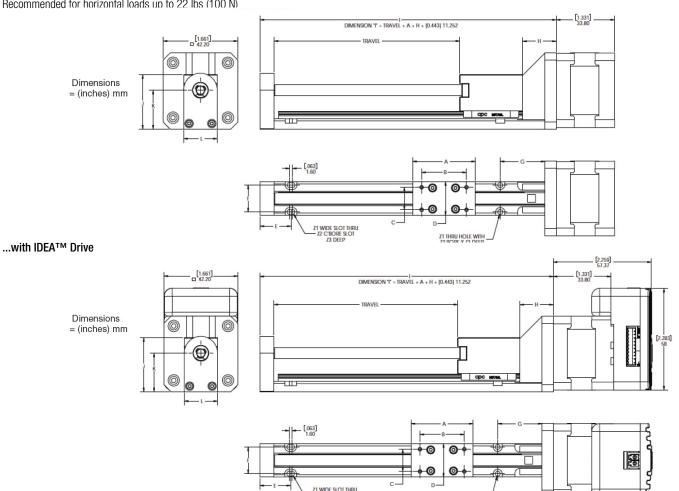
Carriage holes available in Metric sizes M2, M2.5, M3, M4


Double Stack

■ BGS04 Linear Rail with 28000 Series Size 11 Linear Actuator

Recommended for horizontal loads up to 22 lbs (100 N)

	Α	В	С	D	E	F	G	Н	I	J	K	L	Z 1	Z2	Z 3
(inch)	(1.40)	(1.00)	(0.50)	(0.75)	(0.69)	(0.60)	(1.00)	(0.75)	*	(1.22)	(0.87)	(0.75)	(0.11)	(0.20)	(0.09)
mm	35.56	25.40	12.70	19.05	17.53	15.24	25.4	19.05		30.86	22.10	19.05	2.8	5.1	2.3


* Dimension "I" is a function of required travel distance.

Single Stack

■ BGS04 Linear Rail with 43000 Series Size 17 Linear Actuator

Recommended for horizontal loads up to 22 lbs (100 N)

Double Stack

28000 Series Size 11 Linear Actuator

Size 11 Double Stack: 28 mm (1.1-in) Hybrid Linear Actuator (1.8° Step										
Angle)										
Wiring	Bipolar									
Winding Voltage	2.1 VDC 5 VDC 12 VDC									
Current (RMS)/phase	1.9 A	750 mA	313 mA							
Resistance/phase	1.1 Ω	6.7 Ω	34.8 Ω							
Inductance/phase	1.1 mH	5.8 mH	35.6 mH							
Power Consumption		7.5 W Total								
Rotor Inertia		13.5 gcm ²								
Insulation Class	Clas	s B (Class F avail	able)							
Weight	5.8 oz (180 g)									
Insulation Resistance	_	20 MΩ								

Size 11 Double Stack External Linear

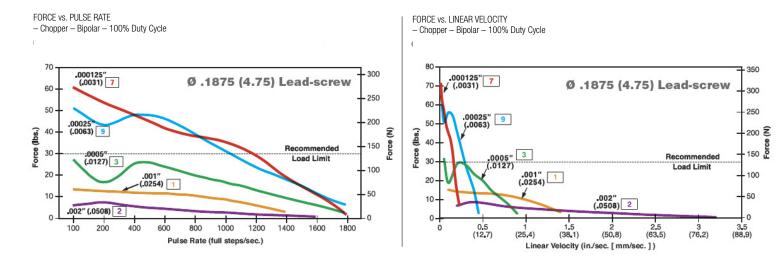
Single Stack

43000 Series Size 17 Linear Actuator

Size 17: 43 mm (1.7-in) Hybrid Linear Actuator (1.8° Step Angle)					
Wiring	Bipolar			Unipolar**	
Programmable Drive	IDEA™ Drive Option Available			Not Applicable	
Winding Voltage	2.33 VDC	5 VDC	12 VDC	5 VDC	12 VDC
Current (RMS)/phase	1.5 A	700 mA	290 mA	700 mA	290 mA
Resistance/phase	1.56 Ω	7.2 Ω	41.5 Ω	7.2 Ω	41.5 Ω
Inductance/phase	1.9 mH	8.7 mH	54.0 mH	4.4 mH	27.0 mH
Power Consumption	7 W				
Rotor Inertia	37 gcm ²				
Insulation Class	Class B (Class F available)				
Weight	8.5 oz (241 g)				
Insulation Resistance	20 ΜΩ				

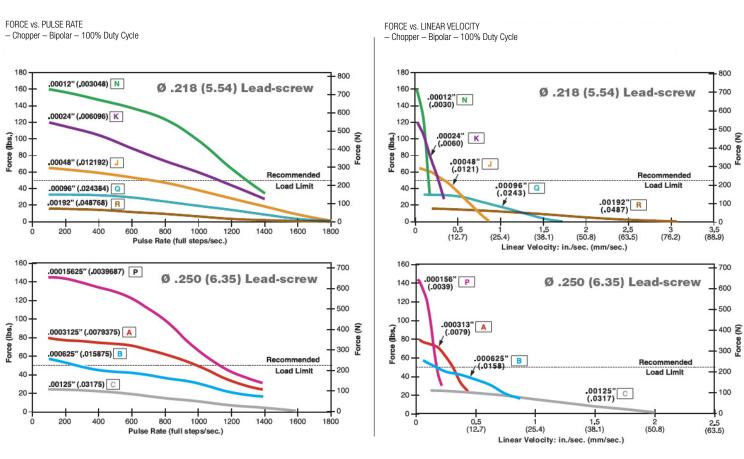
 $^{^{\}star}\,43000\,\,\text{Series Single Stack with IDEA programmable drive.}\,\,\text{Contact Haydon Kerk if higher voltage motor is desired}.$ ** Unipolar drive gives approximately 30% less thrust than bipolar drive.

IDEA™ Drive software is simple to use with on-screen buttons and easy-tounderstand programming guides.


Size 17 External Linear with programmable IDEA Drive

- Fully Programmable
- RoHS Compliant
- USB or RS-485 Communication • Microstepping Capability – Full, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64
- Graphic User Interface
- Auto-population of Drive Parameters
- Programmable Acceleration/Deceleration and Current Control

For more information see the <u>IDEA™ Drive Data Sheet</u>


Double Stack

■ 28000 Series Size 11 Linear Actuator

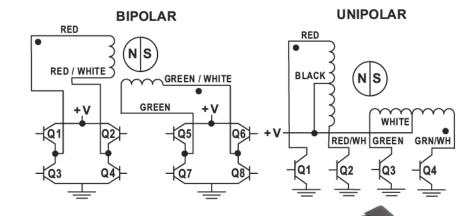
Double Stack

43000 Series Size 17 Linear Actuator

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.

Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.



■ 28000 Series Size 11 and 43000 Series Size 17 Linear Actuators

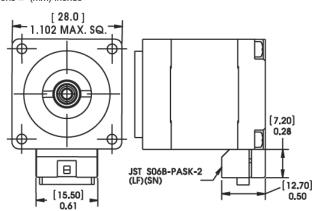
Hybrids: Wiring Hybrids: Stepping Sequence

	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8	
贝	Unipolar	Q1	Q2	Q3	Q4	4
extend cw	Step					
¥ 	1	ON	OFF	ON	0FF	W
	2	OFF	ON	ON	OFF	PETRACT
•	3	OFF	ON	OFF	ON	#
	4	ON	OFF	OFF	ON	
	1	ON	OFF	ON	OFF	

Note: Half stepping is accomplished by inserting an off state between transitioning phases.

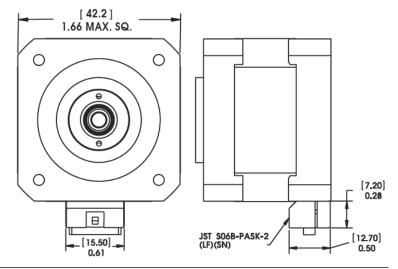
Size 11 28000 Series abd Size 17 43000 Series • Integrated Connectors

Hybrid Size 11 Double Stack and Size 17 Single Stack linear actuators are available with an integrated connector. Offered alone or with a harness assembly, this connector is RoHS compliant and features a positive latch in order for high connection integrity. The connector is rated up to 3 amps and the mating connector will handle a range of wire gauges from 22 to 28. This motor is ideal for those that want to plug in directly to pre existing harnesses. In addition to standard configurations. Haydon Kerk Motion Solutions can custom design this motor to meet your specific application requirements.


Motor Connector: JST part # S06B-PASK-2 Mating Connector: JST part # PAP-06V-S Haydon Kerk Part #56-1210-5 (12 in. Leads) Wire to Board Connector: JST part number SPHD-001T-P0.5

	6.0		
Pin #	Bipolar	Unipolar	Color
1	Phase 2 Start	Phase 2 Start	G/W
2	Open	Phase 2 Common	-
3	Phase 2 Finish	Phase 2 Finish	Green
4	Phase 1 Finish	Phase 1 Finish	R/W
5	Open	Phase 1 Common	-
6	Phase 1 Start	Phase 1 Start	Red

Dimensional Drawings


■ Integrated Connector with 28000 Series Size 11 Linear Actuator

Dimensions = (mm) inches

■ Integrated Connector with 43000 Series Size 17

Dimensions = (mm) inches

BGS06 Linear Rail

with Hybrid 43000 Series Size 17 Single or Double Stack Linear Actuator

The BGS™ Linear Rail combines many technologies into a single integrated linear motion platform. The system provides excellent load capability and is engineered for both normal and overhanging loads.

Technical specifications for Size 17 Hybrid Linear Actuator Stepper Motors are on page 3.

■ Specifications: BGS06

BGS with Hybrid Linear Actuator Motor	Size 17 Single and Double Stack*
Max. Stroke Length	24 in (610 mm)
Max. Load (horizontal)	135 lbs (600 N)
Roll Moment	11.62 lbs-ft (15.75 Nm)
Pitch Moment	7.93 lbs-ft (10.75 Nm)
Yaw Moment	9.15 lbs-ft (12.4 Nm)

Available with an optional	programmable IDEA™ Drive.
----------------------------	---------------------------

Nominal T	hread Lead	Lead Code	Nominal T	hread Lead	Lead Code
inches	mm	Leau Goue	inches	mm	Leau Coue
0.050	1.27	0050	0.400	10.16	0400
0.079	2.00	0079	0.472	12.00	0472
0.100	2.54	0100	0.500	12.70	0500
0.157	4.00	0157	0.750	19.05	0750
0.197	5.00	0197	0.984	25.00	0984
0.200	5.08	0200	1.000	25.40	1000
0.250	6.35	0250	1.200	30.48	1200
0.375	9.53	0375			

To determine what is best for your application see the Linear Rail Applications Checklist.

Identifying the BGS Part Number Codes when Ordering

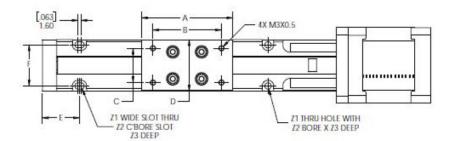
		_						
BG	S	06	В —	G	_	0079	_	XXX
Prefix	Frame Style	Frame Size Load*	Lubrication	Drive / Mounting		Nominal Thread Lead Code		Unique Identifier
BG = Ball Guide System	S = Standard	06 = Max.static load 135 lbs (600 N)	B = TFE wear resist, dry lubricant Black lce®	M = Motorized G = IDEA™ integrated programmable drive - USB communications J = IDEA™ integrated programmable drive - RS485 communications		0079 = .079-in (2.0) (see Lead Code charts above)		Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

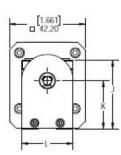
NOTE: Dashes must be included in Part Number (–) as shown above. For assistance call our Engineering Team at 603 213 6290.

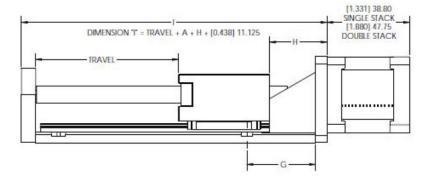
Carriage holes available in Metric sizes M3, M3.5, M4

www.haydonkerkpittman.com

Single Stack

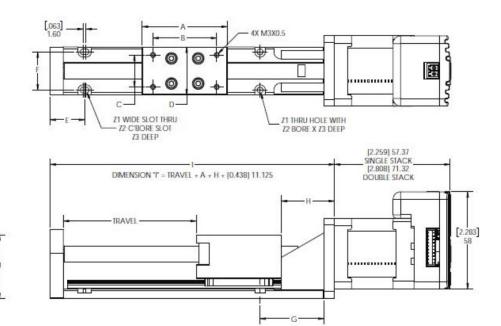

■ BGS06 Linear Rail with 43000 Series Size 17 Linear Actuator


Recommended for horizontal loads up to 135 lbs (600 N)


	Α	В	С	D	E	F	G	Н	I	J	K	L	Z1	Z2	Z3
(inch)	(2.00)	(1.50)	(0.75)	(1.13)	(0.81)	(0.90)	(1.50)	(1.25)	*	(1.5)	(1.05)	(1.13)	(0.14)	(0.25)	(0.13)
mm	50.80	38.10	19.05	28.58	20.57	22.86	38.10	31.75		38.15	26.77	28.58	3.6	6.3	3.3

Dimensions = (inches) mm

^{*} Dimension "I" is a function of required travel distance.



...with IDEA™ Drive

Dimensions = (inches) mm

Single Stack

Size 17: 43 mm (1.7-in) Hybrid Linear Actuator (1.8° Step Angle)							
Wiring		Bipolar		Unipolar**			
Programmable Drive	IDEA™	Drive Option A	/ailable	Not App	olicable		
Winding Voltage	2.33 VDC	5 VDC	12 VDC	5 VDC	12 VDC		
Current (RMS)/phase	1.5 A	700 mA	290 mA	700 mA	290 mA		
Resistance/phase	1.56 Ω	7.2 Ω	41.5 Ω	7.2 Ω	41.5 Ω		
Inductance/phase	1.9 mH	8.7 mH	54.0 mH	4.4 mH	27.0 mH		
Power Consumption			7 W				
Rotor Inertia			37 gcm ²				
Insulation Class	Class B (Class F available)						
Weight	8.5 oz (241 g)						
Insulation Resistance			20 MΩ				

^{* 43000} Series Single Stack with IDEA programmable drive. Contact Haydon Kerk if higher voltage motor is desired.

Size 17 External Linear with programmable IDEA Drive

IDEATM Drive software is simple to use with on-screen buttons and easy-to-understand programming guides.

- Fully Programmable
 RoHS Compliant
 USB or RS-485 Communication
 Microstepping Capability Full, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64

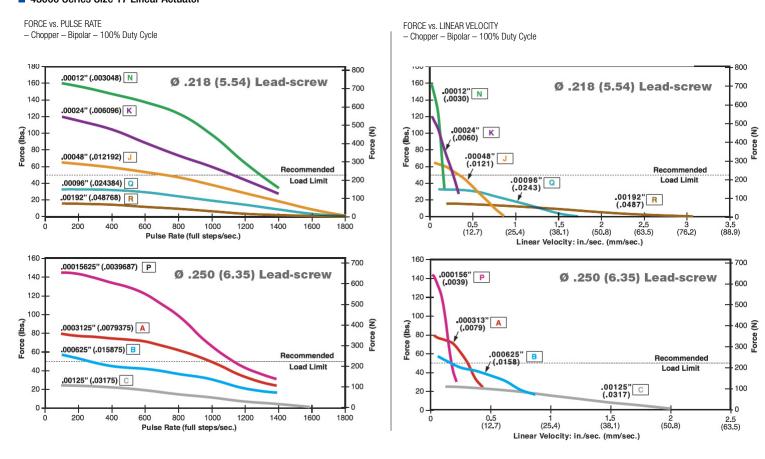
- Graphic User Interface
 Auto-population of Drive Parameters
 Programmable Acceleration/Deceleration and Current Control

For more information see the IDEA™ Drive Data Sheet

Double Stack

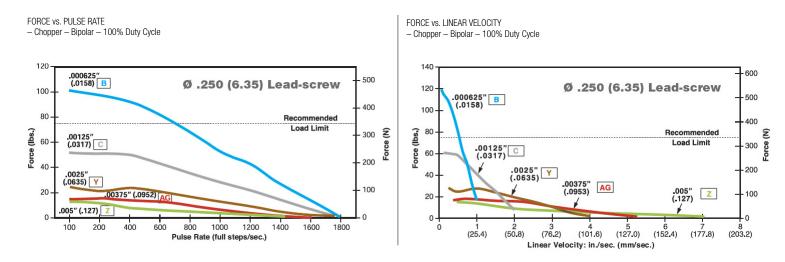
Size 17 Double Stack: 43 mm (1.	Size 17 Double Stack: 43 mm (1.7-in) Hybrid Linear Actuator (1.8° Step Angle)								
Wiring	Bipolar								
Programmable Drive	IDEA	TM Drive Option Avail	able						
Winding Voltage	2.33 VDC	5 VDC	12 VDC						
Current (RMS)/phase	2.6 A	1.3 A	550 mA						
Resistance/phase	0.9 Ω	3.8 Ω	21.9 Ω						
Inductance/phase	1.33 mH	8.21 mH	45.1 mH						
Power Consumption		13.2 W							
Rotor Inertia		78 gcm ²							
Insulation Class	Class B (Class F available)								
Weight	12.5 oz (352 g)								
Insulation Resistance		20 MΩ							

 $^{^\}star$ 43000 Series Single Stack with IDEA programmable drive. Contact Haydon Kerk if higher voltage motor is desired.



^{**} Unipolar drive gives approximately 30% less thrust than bipolar drive.

 $^{^{\}star\star}$ Unipolar drive gives approximately 30% less thrust than bipolar drive.


Double Stack

■ 43000 Series Size 17 Linear Actuator

Double Stack

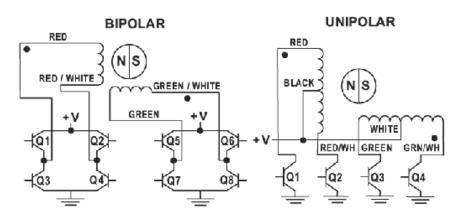
■ 43000 Series Size 17 Linear Actuator

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.

Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.

220 **Haydon** kerk


■ 28000 Series Size 11 and 43000 Series Size 17 Linear Actuators

Hybrids: Stepping Sequence

Hybrids: Wiring

	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8			
EX	Unipolar	Q1	Q2	Q3	Q4			
EXTEND CW	Step		,					
¥ 	1	ON	OFF	ON	OFF			
	2	OFF	ON	ON	OFF			
•	3	OFF	ON	OFF	ON			
	4	ON	OFF	OFF	ON			
	1	ON	OFF	ON	OFF			
	Note: Half etapping is accomplished by inserting an off state between							

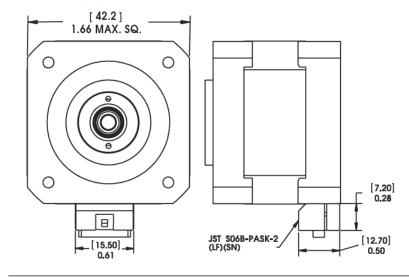
Note: Half stepping is accomplished by inserting an off state between transitioning phases.

Size 17 43000 Series • Integrated Connectors

Hybrid Size 17 linear actuators are available with an integrated connector. Offered alone or with a harness assembly, this connector is RoHS compliant and features a positive latch in order for high connection integrity. The connector is rated up to 3 amps and the mating connector will handle a range of wire gauges from 22 to 28. This motor is ideal for those that want to plug in directly to pre existing harnesses. In addition to standard configurations, Haydon Kerk Motion Solutions can custom design this motor to meet your specific application requirements.

Motor Connector: Mating Connector:

Wire to Board Connector:


JST part # S06B-PASK-2 JST part # PAP-06V-S Haydon Kerk Part #56-1210-5 (12 in. Leads) JST part number SPHD-001T-P0.5

Pin #	Bipolar	Unipolar	Color
1	Phase 2 Start	Phase 2 Start	G/W
2	Open	Phase 2 Common	-
3	Phase 2 Finish	Phase 2 Finish	Green
4	Phase 1 Finish	Phase 1 Finish	R/W
5	Open	Phase 1 Common	-
6	Phase 1 Start	Phase 1 Start	Red

Dimensional Drawing

■ 43000 Series Size 17 Linear Actuator with Integrated Connector

Dimensions = (mm) inches

BGS08™ Linear Rail

This BGS™ heavy-duty linear rail combines many technologies into a single integrated linear motion platform. The lead screw drives a machined aluminum carriage mounted to a precision stainless steel ball slide resulting in a rigid, smooth-operating motion system.

■ Specifications: BGS08

BGS with Hybrid Linear Actuator Motor	Size 23 Single and Double Stack
Max. Stroke Length	30 in (760 mm)
Max. Load (horizontal)	225 lbs (1,000 N)
Roll Moment	22.5 lbs-ft (30.5 Nm)
Pitch Moment	19.36 lbs-ft (26.25 Nm)
Yaw Moment	22.27 lbs-ft (30.20 Nm)

Nominal T	hread Lead	Lead Code			
inches	mm	Lead Gode			
0.098	2.50	0098			
0.100	2.54	0100			
0.197	5.00	0197			
0.200	5.08	0200			
0.500	12.70	0500			
0.630	16.00	0630			
1.000	25.40	1000			

To determine what is best for your application see the Linear Rail Applications Checklist.

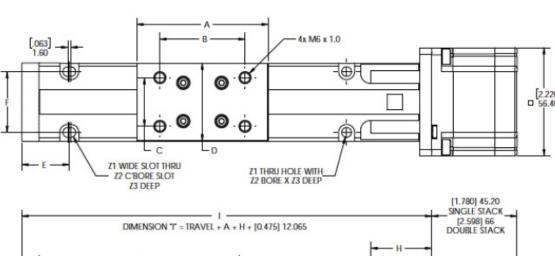
Identifying the BGS Part Number Codes when Ordering

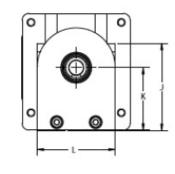
BG	S	08	В —	M	_	0025	_	XXX
Prefix	Frame Style	Frame Size Load*	Lubrication	Drive / Mounting		Nominal Thread Lead Code		Unique Identifier
BG = Ball Guide System	S = Standard	08 = Max.static load 225 lbs (1,000 N)	B = TFE wear resist, dry lubricant Black loe®	M = Motorized		0197 = .197-in (5.0) (see Lead Code charts above)		Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

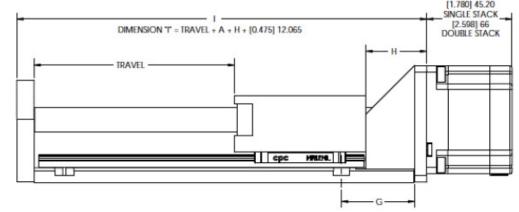
NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 603 213 6290.

Carriage holes available in Metric sizes M5 and M6

222 **Haydon kerk**®


■ BGS08 Linear Rail with Hybrid 57000 Size 23 Linear Motors


Recommended for horizontal loads up to 225 lbs (1,000 N)


	Α	В	С	D	E	F	G	Н	ı	J	K	L	Z 1	Z2	Z 3
(inch)	(2.70)	(1.75)	(1.00)	1.60	(0.98)	(1.25)	(1.50)	(1.25)	*	(1.79)	(1.29)	(1.60)	(0.20)	(0.33)	(0.19)
mm	68.58	44.45	25.40	40.64	24.89	31.75	38.10	31.85	*	45.39	32.69	40.64	5.1	8.4	4.8

^{*} Dimension "I" is a function of required travel distance.

Dimensions = (inches) mm



www.haydonkerkpittman.com

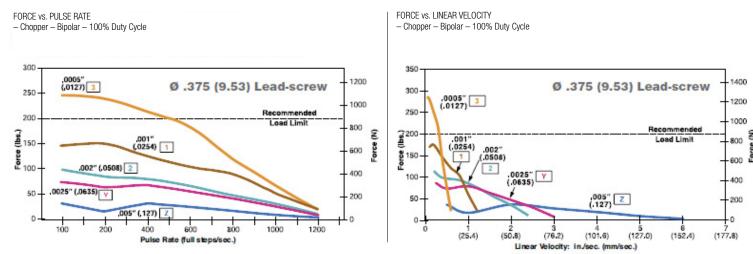
Single Stack

Size	23: 57 mm (2.3	-in) Hybrid Linea	ar Actuator (1.8°	Step Angle)					
Wiring		Bipolar		Unipolar**					
Winding Voltage	3.25 VDC	5 VDC	12 VDC	5 VDC	12 VDC				
Current (RMS)/phase	2.0 A	1.3 A	.54 A	1.3 A	.54 A				
Resistance/phase	1.63 Ω	3.85 Ω	22.2 Ω	3.85 Ω	22.2 Ω				
Inductance/phase	3.5 mH	10.5 mH	58 mH	5.3 mH	23.6 mH				
Power Consumption			13 W						
Rotor Inertia			166 gcm ²						
Insulation Class		Class	s B (Class F availa	able)					
Weight		18 oz (511 g)							
Insulation Resistance			20 MΩ						

 $^{^{\}star\star}$ Unipolar drive gives approximately 30% less thrust than bipolar drive.

Double Stack

Size 23 Double Stac	k: 57 mm (2.3-in) Hy	brid Linear Actuator	(1.8° Step Angle)					
Wiring		Bipolar						
Winding Voltage	3.25 VDC	5 VDC	12 VDC					
Current (RMS)/phase	3.85 A	2.5 A	1 A					
Resistance/phase	0.98 Ω	2.0 Ω	12.0 Ω					
Inductance/phase	2.3 mH	7.6 mH	35.0 mH					
Power Consumption		25 W Total						
Rotor Inertia		321 gcm ²						
Insulation Class	С	lass B (Class F availabl	e)					
Weight		32 oz (958 g)						
Insulation Resistance	20 ΜΩ							
	I							


Single Stack

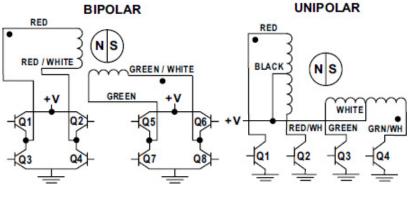
■ 57000 Series Size 23 Linear Actuator

Double Stack

■ 57000 Series Size 23 Linear Actuator

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply. Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot. With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.

Size 23 57000 Series • Stepping Sequence & Wiring


■ 57000 Series Size 23 Linear Actuator

Hybrids: Stepping Sequence

	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8		
Ξ	Unipolar	Q1	Q2	Q3	Q4		
EXTEND CW	Step						
≷	1	ON	OFF	ON	OFF		
	2	OFF	ON	ON	OFF		
•	3	OFF	ON	OFF	ON		
	4	ON	OFF	OFF	ON		
	1	ON	OFF	ON	OFF		

Note: Half stepping is accomplished by inserting an off state between transitioning phases.

Maydon kerk www.haydonkerkpittman.com

EGS04 Motorized with 28000 Series

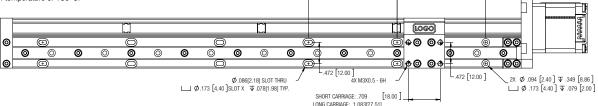
Linear Rail with Size 11 Double Stack Hybrid Stepper

Designed for Lab Automation and Electronic Assembly customers who need high-speed and highly-efficient point-to-point motion. This low-profile stage combines our patented screw support system, which allows for extended travel stroke without the normal reduction in screw RPM, with a ball bearing profile rail. The motorized EGS04 Linear Rail is available with either size 11 or size 17 hybrid stepper motors (see page 3). Standard carriage option is designed for horizontal loads up to 67 N (15 lbs.), and a long carriage option is available for higher loads.

- Low-profile
- High speed capability
- Efficient, stiff load support

Specifications			
Design Payload (mass)	6.8kg [15 lbs]	Pitch Moment*	5.25 N-m [46 lbf-in]
Axial Force	133N [30 lbf]	Yaw Moment*	3 N-m [26 lbf-in]
Roll Moment*	3.1 N-m [27 lbf-in]	Repeatability	+/-25µm [0.001 in]

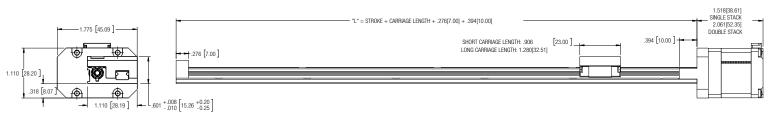
^{*} Moment data based on 0.25° deflection


Identifying the Motorized EGS Part Numbers when Ordering

EGS	04	K	— М	0100	— Е	S	M _	_ Axx
Prefix EGS = EGS Series	Nominal Rail Size 04 = .25 in (6.35mm) diameter screw	Screw Coating / Grease K = Kerkote (standard) S = Uncoated	Drive Type M = Motorized, stepper	Lead Code 0025 = 0.025" lead 0039 = 1mm lead 0050 = 0.050" lead 0063 = 0.0625" lead 0079 = 2mm lead 0100 = 0.100" lead 0118 = 3mm lead 0200 = 0.200" lead 0250 = 0.250" lead 0394 = 10mm lead 0500 = 0.500" lead 0750 = 0.750" lead	Encoder / Feedback E = Rotary encoder X = No encoder	Carriage(s) S = Standard L = Long M = Multiple (std or long)	Carriage Mounting E = Imperial M = Metric	Stroke / Unique Identifier Axx = Unique identifier (e.g. A01)

Size 11 Double Stack: 28 mm (1.1-in) Hybrid External Linear Actuator (1.8° Step Angle) 7.5 W Total Wiring Bipolar **Power Consumption** 13.5 gcm² Winding Voltage 2.1 VDC Rotor Inertia

Current (RMS)/phase 1.9 A **Insulation Class** Class B (Class F available) 1.1 Ω Weight 5.8 oz (180 g) Resistance/phase Inductance/phase 1.1 mH Insulation Resistance $20~\mathrm{M}\Omega$

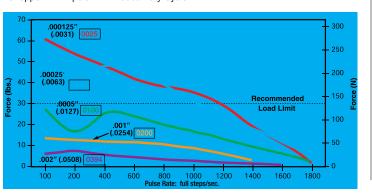

Standard motors are Class B rated for maximum temperature of 130°C.

Size 11 Double Stack

External Linear Actuator

28000 Series

226 **Maydon** kerk


Double Stack

EGS04 Motorized

Size 11 28000 Series

FORCE vs. PULSE RATE

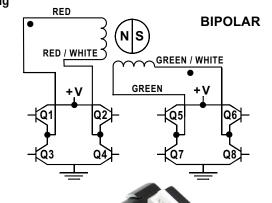
- Chopper - Bipolar - 100% Duty Cycle

FORCE vs. LINEAR VELOCITY

- Chopper - Bipolar - 100% Duty Cycle

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply. Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.


Size 11 28000 Series • Stepping Sequence & Wiring

Hybrids: **Stepping Sequence**

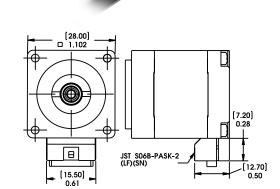
	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8	
Œ	Step					A
EXTEND CW -	1	ON	0FF	ON	OFF	
	2	OFF	ON	ON	OFF	- MO
	3	OFF	ON	OFF	ON	RETRACT CCW
\	4	ON	0FF	0FF	ON	RETR
	1	ON	OFF	ON	OFF	

Note: Half stepping is accomplished by inserting an off state between transitioning phases.

Hybrids: Wiring

Offered alone or with a harness assembly, the integrated connector is RoHS compliant and features a positive latch in order for high connection integrity. The connector is rated up to 3 amps and the mating connector will handle a range of wire gauges from 22 to 28. Ideal for those that want to plug in directly to pre-existing harnesses.

Motor Connector: JST part # S06B-PASK-2


Mating Connector: JST part # PAP-06V-S

Haydon Kerk part # 56-1210-5 (12 in. Leads)

Wire to Board Connector: JST part # SPHD-001T-P0.5

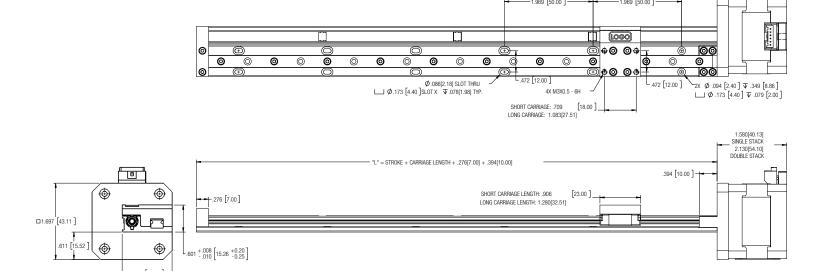
Pin #	Bipolar	Unipolar	Color
1	Phase 2 Start	Phase 2 Start	G/W
2	Open	Phase 2 Common	-
3	Phase 2 Finish	Phase 2 Finish	Green
4	Phase 1 Finish	Phase 1 Finish	R/W
5	Open	Phase 1 Common	_
6	Phase 1 Start	Phase 1 Start	Red

Motorized Size 17 Single Stack

EGS04 Motorized with 43000 Series

Linear Rail with Size 17 Single or Double Stack Hybrid Stepper

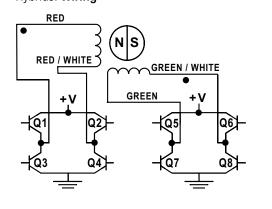
This low-profile stage combines our patented screw support system, which allows for extended travel stroke without the normal reduction in screw RPM, with a ball bearing profile rail. The motorized EGS04 Linear Rail is available with size 17 hybrid stepper motors. Standard carriage option is designed for horizontal loads up to 67 N (15 lbs.), and a long carriage option is available for higher loads.

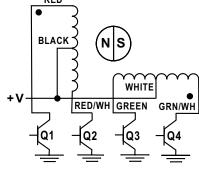

- Low-profile
- High speed capability
- Efficient, stiff load support

Identifying the Motorized EGS Part Numbers when Ordering													
EGS	04	K	М	0100	_	E	S	M	Axx				
EGS = GA	Nominal Rail Size 14 = .25 in (6.35mm) diameter screw	Screw Coating / Grease K = Kerkote (standard) S = Uncoated	Drive Type M = Motorized, stepper	Lead Code 0025 = 0.025" lead 0039 = 1 mm lead 0050 = 0.050" lead 0063 = 0.0625" lead 0079 = 2 mm lead 0100 = 0.100" lead 0118 = 3 mm lead 0200 = 0.200" lead 0250 = 0.250" lead 0394 = 10 mm lead 0500 = 0.500" lead 0750 = 0.750" lead		Encoder / Feedback E = Rotary encoder X = No encoder	Carriage(s) S = Standard L = Long M = Multiple (std or long)	Carriage Mounting E = Imperial M = Metric	Stroke / Unique Identifier Axx = Unique identifier (e.g. A01)				

	Size 17: 43 mm (1.7-in) External Linear Actuator (1.8° Step Angle)											
		S	ingle Stack			Double Stack						
Wiring	Bipolar			Unipo	olar**	Bipolar						
Winding Voltage	2.33 VDC [†]	5 VDC	12 VDC	5 VDC	12 VDC	2.33 VDC [†]	5 VDC	12 VDC				
Current (RMS)/phase	1.5 A	700 mA	290 mA	700 mA	290 mA	2.6 A	1.3 A	550 mA				
Resistance/phase	1.56 Ω	7.2 Ω	41.5 Ω	7.2 Ω	41.5 Ω	0.9 Ω	3.8 Ω	21.9 Ω				
Inductance/phase	1.9 mH	8.7 mH	54.0 mH	4.4 mH	27.0 mH	1.33 mH	8.21 mH	45.1 mH				
Power Consumption			7 W			13.2 W						
Rotor Inertia			37 gcm ²				78 gcm ²					
Insulation Class		Class B	(Class F ava	ilable)		Class B (Class F available)						
Weight		8.	.5 oz (241 g)		12.5 oz (352 g)							
Insulation Resistance			20 MΩ				20 MΩ					

^{**}Unipolar drive gives approximately 30% less thrust than bipolar drive.

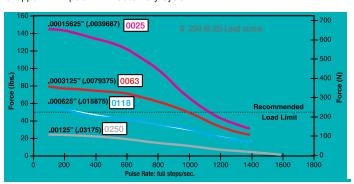

Size 17 43000 Series • Stepping Sequence & Wiring


Hybrids: **Stepping Sequence**

Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8			
Unipolar	Q1	Q2	Q3	Q4			
Step							
1	ON	OFF	ON	OFF			
2	OFF	ON	ON	OFF			
3	OFF	ON	OFF	ON			
4	ON	OFF	OFF	ON			
1	ON	OFF	ON	OFF			

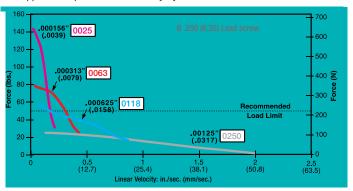
Note: Half stepping is accomplished by inserting an off state between

Hybrids: Wiring


E5 encoder on Size 17

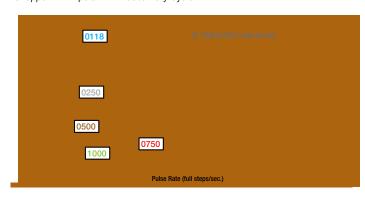
hybrid motor

Single Stack

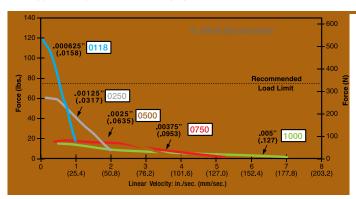

FORCE vs. PULSE RATE

- Chopper - Bipolar - 100% Duty Cycle

FORCE vs. LINEAR VELOCITY


- Chopper - Bipolar - 100% Duty Cycle

Double Stack


FORCE vs. PULSE RATE

- Chopper - Bipolar - 100% Duty Cycle

FORCE vs. LINEAR VELOCITY

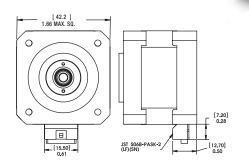
- Chopper - Bipolar - 100% Duty Cycle

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply. Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.

Size 17 47000 Series • Integrated Connector

Offered alone or with a harness assembly, the integrated connector is RoHS compliant and features a positive latch in order for high connection integrity. The connector is rated up to 3 amps and the mating connector will handle a range of wire gauges from 22 to 28. Ideal for those that want to plug in directly to pre-existing harnesses.

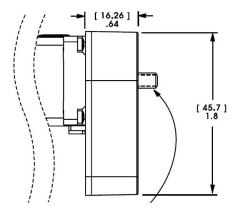

Motor Connector: JST part # S06B-PASK-2

Mating Connector: JST part # PAP-06V-S

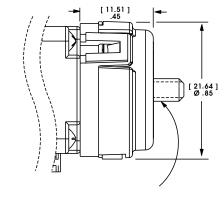
Haydon Kerk part # 56-1210-5 (12 in. Leads)

Wire to Board Connector: JST part # SPHD-001T-P0.5

Pin #	Bipolar	Bipolar Unipolar	
1	Phase 2 Start	Phase 2 Start	G/W
2	Open	Phase 2 Common	-
3	Phase 2 Finish	Phase 2 Finish	Green
4	Phase 1 Finish	Phase 1 Finish	R/W
5	Open	Phase 1 Common	-
6	Phase 1 Start	Phase 1 Start	Red


Encoders Designed for All EGS Rails

EGS Series rails are available with specifically designed encoders for applications that require feedback. The compact optical incremental encoder designs are available with two channel quadrature TTL squarewave outputs. Version with Index channel are also available. Various resolutions are available, up to 5000 CPR.


Simplicity and low cost make the encoders ideal for both high and low volume motion control applications. The internal monolithic electronic module converts the real-time shaft angle, speed, and direction into TTL compatible outputs. The encoder modules incorporate a lensed LED light source and monolithic photodetector array with signal shaping electronics to produce the two channel bounceless TTL outputs.

E5 Encoder Dimensions

Dimensions = [mm] inches

E4T Encoder Dimensions

Electrical Specifications							
	Minimum	Typical	Maximum	Units			
Input Voltage	4.5	5.0	5.5	VDC			
Output Signals	4.5	5.0	5.5	VDC			

2 channel quadrature TTL squarewave outputs.

Channel B leads A for a clockwise rotation of the rotor viewed from the encoder cover.

Tracks at speeds of 0 to 100,000 cycles/sec.

Index available on E4T.

Operating Temperature								
	Minimum	Maximum						
E4T	- 20°C (- 28°F)	100°C (212°F)						
E5	- 20°C (- 40°F)	100°C (212°F)						

Mechanical Specifications					
	Maximum				
Acceleration	250,000 rad/sec2				
Vibration (5 Hz to 2 kHz)	20 g				

Resolution							
	Stand	Standard Resolutions (CPR)					
E4T	200	400	1000	1000			
E5	200	400	1000	5000			

*Other Resolutions Available - Contact Factory

E4T Single-Ended		E4T Differential		E5 Sin	gle-Ended	E5 Differential	
Connector Pin#	Description	Connector Pin#	Description	Connector Pin# Description		Connector Pin #	Description
1	+5VDC power	1	Ground	1	Ground	1	Ground
2	A channel	2	A channel	2	Index	2	Ground
3	Ground	3	A- channel	3	A channel	3	Index-
4	B channel	4	+5VDC power	4	+5VDC power	4	Index+
		5	B channel	5	B channel	5	A- channel
		6	B- channel			6	A+ channel
						7	+5 VDC Power
						8	+5 VDC Power
						9	B- channel
						10	B+ channel

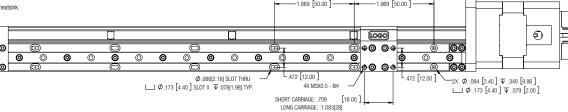
EGS04 Motorized with BLDC

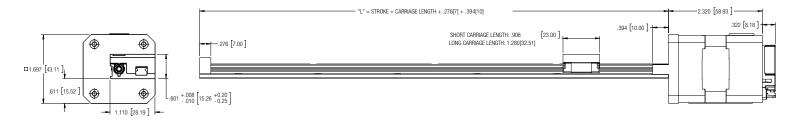
Linear Rail with BLDC Motor

This low-profile stage features screw support with a ball bearing profile rail. The motorized EGS04 Linear Rail is available with a 42mm brushless DC (BLDC) servo motor for high speed applications. Standard configuration is a single stack EC042B with 1000cpr E30D encoder included. Recommended for horizontal loads up to 15 lbs (67N).

- Low-profile
- High speed capability
- Efficient, stiff load support

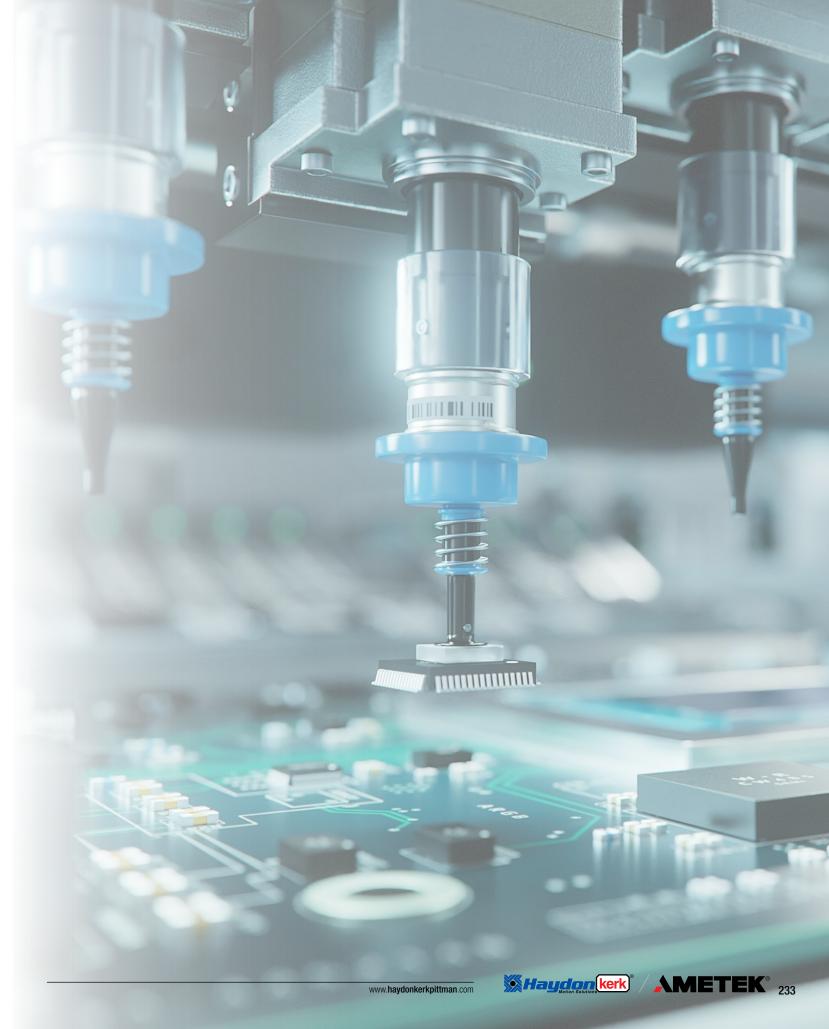
Refer to EC042B data sheet for complete motor specifications.


	Identifying the Motorized EGS Part Numbers when Ordering									
EGS	04	K	Р	0100	— Е	S	M	- Axx		
Prefix EGS = EGS Series	Nominal Rail Size 04 = .25 in (6.35mm) diameter screw	Screw Coating / Grease K = Kerkote (standard) S = Uncoated	Drive Type P = Motorized BLDC Q = Integrated drive, BLDC	Lead Code* 0025, 0039, 0050, 0063, 0079, 0100, 0118, 0200, 0250, 0394, 0500, 0750, 1000	Encoder / Feedback E = Rotary encoder X = No encoder	Carriage(s) S = Standard L = Long M = Multiple (std or long)	Carriage Mounting E = Imperial M = Metric	Stroke / Unique Identifier Axx = Unique identifier (e.g. A01)		


* Refer to page 1 or 3 for coordinating lead resolutions.

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 603 213 6290. Carriage holes available in M3x0.5 or #4-40.

Motor Data		EC042B-1
Max DC Terminal Voltage	VT	96 V
Max Speed (Mechanical)	ωmax	9000 rpm
Continuous Stall Torque ¹	Tcs	0.064 Nm / 9.0 oz-in
Peak Torque (Maximum) ¹	Tpk	0.38 Nm / 54 oz-in
Coulomb Friction Torque	Tf	0.0014 Nm / 0.20 oz-in
Viscous Damping Factor	D	3.4E-06 V/(rad/s) / 0.050 oz-in/krpm
Thermal Time Constant	$ au_{th}$	5.1 min
Thermal Resistance	R _{th}	9.1 °C/W
Max. Winding Temperature	Θ_{MAX}	105 °C
Rotor Inertia	J _r	1.4E-05 kg-m ² / 0.0021 oz-in-s ²
Motor Weight	W _m	340 g / 12 oz
Recorded at maximum winding temperature at 25°C ambie	nt and without heatsink.	



Slide Guided Rail Systems

Haydon Kerk Slide Guided Rails are available in many styles and sizes to meet your application needs. Many rails are offered with integrated drive, motorized, non-motorized or guide only versions without lead screw. Rails are available with wear-compensating, anti-backlash driven carriages to insure repeatability and accurate positioning. All moving surfaces include engineered polymers that provide a precise, strong and stable platform for a variety of linear motion applications.

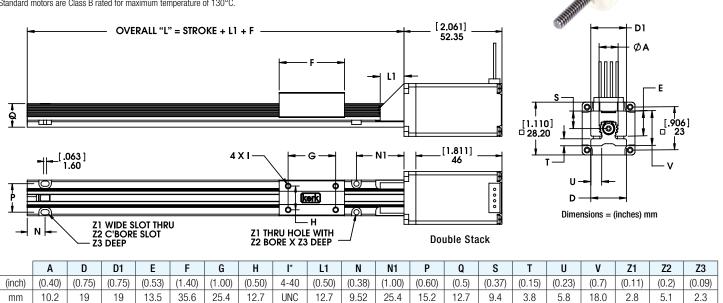
Performance	Performance Atributes								
Series	Description	Sizes	Max Stroke m	Max Load N	Motorized	Rail Only	Guide Only	Stiffness	Major Attributes
RGS	Aluminum rail w/ wear compensation	4, 6, 8, 10	2.5	67-445	•	•	•	*	High speed
RGW	Aluminum rail w/ wear compensation	6, 10	2.5	156-445	•	•	•	**	Wide base
WGS	Aluminum rail w/ wear compensation	6	2.5	156	•	•		****	Low profile
LRS	Aluminum rail w/ wear compensation	4		222	•	•		****	Higher thrust
SRA	Steel tube, no wear compensation	3, 4, 6, 8	1.6	45-440		•			Compact
SRZ	Steel tube, no wear compensation	3, 4, 6, 8	1.6	45-440		•			Compact

RGS04 Motorized with 28000 Series

Linear Rail with Size 11 Double Stack Hybrid Stepper

The RGS04 28000 Series is our smallest screw driven slide that offers exceptional linear speed, accurate positioning and long life in a compact, value-priced assembly. The length and speed of the RGS is not limited by critical screw speed, allowing high RPM and linear speeds, even over long spans. Recommended for horizontal loads up to 15 lbs (67N).

To determine what is best for your application see the Linear Rail Applications Checklist.


Identifying the Motorized RGS Part Numbers when Ordering

RG	S	04	К —	M	0100 —	XXX
Prefix RG = Rapid Guide Screw	Frame Style S = Standard	Frame Size Load 04 = 15 lbs (67 N) (Maximum static load)	Coating K = TFE Kerkote	Drive / Mounting M = Motorized	Nominal Thread Lead Code 0025 = .025-in (.635) 0039 = .039-in (1.00) 0050 = .050-in (1.27) 0063 = .0625-in (1.59) 0079 = .079-in (2.00) 0100 = .100-in (2.54)	Unique Identifier Suffix used to identify specific motors or a proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or
					0118 = .118-in (3.00) 0200 = .200-in (5.08) 0250 = .250-in (6.35) 0394 = .394-in (10.00) 0500 = .500-in (12.70) 0750 = .750-in (19.05)	custom part

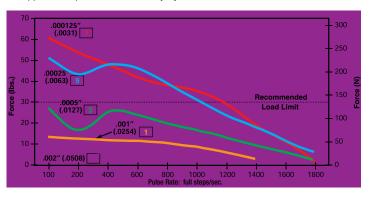
NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 603 213 6290. Carriage holes available in metric sizes M3, M4.

Size 11 Double Stack: 28 mm (1.1-in) Hybrid External Linear Actuator (1.8° Step Angle)						
Wiring	Bipolar	Power Consumption	7.5 W Total			
Winding Voltage	2.1 VDC	Rotor Inertia	13.5 gcm ²			
Current (RMS)/phase	1.9 A	Insulation Class	Class B (Class F available)			
Resistance/phase	1.1 Ω	Weight	5.8 oz (180 g)			
Inductance/phase	1.1 mH	Insulation Resistance	20 MΩ			

Standard motors are Class B rated for maximum temperature of 130°C.

*Metric threads also available for carriage.

Size 11 Double Stack 28000 Series External Linear Actuato



234

Double Stack

FORCE vs. PULSE RATE

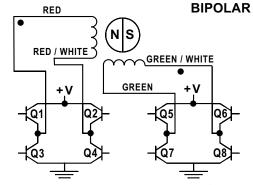
- Chopper - Bipolar - 100% Duty Cycle

FORCE vs. LINEAR VELOCITY

− Chopper − Bipolar − 100% Duty Cycle

the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.


Size 11 28000 Series • Stepping Sequence & Wiring

Hybrids: Stepping Sequence

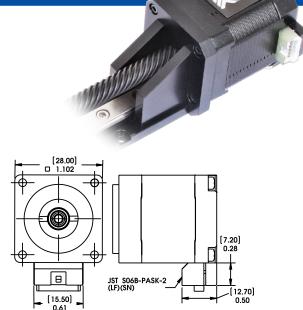
	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8	
∇	Step					A
EXTEND CW	1	ON	0FF	ON	OFF	
CW-	2	OFF	ON	ON	OFF	W.C.C
	3	OFF	ON	OFF	ON	Ι.
V	4	ON	0FF	OFF	ON	RETRACT
	1	ON	0FF	ON	OFF	

Note: Half stepping is accomplished by inserting an off state between transitioning phases.

Hybrids: Wiring

Size 11 28000 Series • Integrated Connector

Offered alone or with a harness assembly, the integrated connector is RoHS compliant and features a positive latch in order for high connection integrity. The connector is rated up to 3 amps and the mating connector will handle a range of wire gauges from 22 to 28. Ideal for those that want to plug in directly to pre-existing harnesses.


Motor Connector: JST part # S06B-PASK-2

JST part # PAP-06V-S **Mating Connector:**

Haydon Kerk part # 56-1210-5 (12 in. Leads)

Wire to Board Connector: JST part # SPHD-001T-P0.5

Pin #	Bipolar	Unipolar	Color			
1	Phase 2 Start	Phase 2 Start	G/W			
2	Open	Phase 2 Common	-			
3	Phase 2 Finish	Phase 2 Finish	Green			
4	Phase 1 Finish	Phase 1 Finish	R/W			
5	Open	Phase 1 Common	-			
6	Phase 1 Start	Phase 1 Start	Red			

236 **Haydon kerk** erk

RGS04 Motorized with 43000 Series

Linear Rail with Size 17 Single or Double Stack Hybrid Stepper with or without an integrated programmable IDEA™ Drive

The RGS04 is a screw driven rail that offers exceptional linear speed, accurate positioning and long life in a compact assembly. The length and speed of the RGS is not limited by critical screw speed, allowing high RPM and linear speeds even over long spans. Recommended for horizontal loads up to 15 lbs (67N).

Double Stack Size 17 43000 Series Double Stack

RGS Series • RGS04

Motorized

Size 17

Single or

Identifying the Motorized RGS Part Numbers when Ordering

RG	S	04	К	M	0100	. XXX
Prefix RG = Rapid Guide Screw	Frame Style S = Standard	Frame Size Load 04 = 15 lbs (67 N) (Maximum static load)	Coating K = TFE Kerkote	Drive / Mounting M = Motorized G = IDEA Integrated programmable drive, USB communications J = IDEA integrated programmable drive, RS485 communications	Nominal Thread Lead Code 0025 = .025-in (.635) 0039 = .039-in (1.00) 0050 = .050-in (1.27) 0063 = .0625-in (1.59) 0079 = .079-in (2.00) 0100 = .100-in (2.54) 0118 = .118-in (3.00) 0200 = .200-in (5.08) 0250 = .250-in (6.35) 0394 = .394-in (10.00) 0500 = .500-in (12.70) 0750 = .750-in (19.05)	Unique Identifier Suffix used to identify specific motors or a proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 603 213 6290. Carriage holes available in metric sizes M3, M4, M5, M6.

Size 17: 43 mm (1.7-in) External Linear Actuator (1.8° Step Angle)												
	S	ingle Stack			Г	Oouble Stac	k					
	Bipolar		Unip	olar**		Bipolar						
IDEA™	[™] Drive Availa	able	N	/A	IDEA	™ Drive Avai	lable					
2.33 VDC [†] 5 VDC 12 VDC 5 VDC 12 VDC 2.33 VDC [†] 5 VDC												
1.5 A	700 mA	290 mA	700 mA	290 mA	2.6 A	1.3 A	550 mA					
1.56 Ω	7.2 Ω	41.5 Ω	7.2 Ω	41.5 Ω	0.9 Ω	3.8 Ω	21.9 Ω					
1.9 mH	8.7 mH	54.0 mH	4.4 mH	27.0 mH	1.33 mH	45.1 mH						
		7 W				13.2 W						
		37 gcm ²				78 gcm ²						
	Class B	(Class F ava	ilable)		Class E	3 (Class F av	ailable)					
Weight 8.5 oz (241 g) 12.5 oz (352 g)												
Insulation Resistance 20 M Ω 20 M Ω												
	IDEA ^{TI} 2.33 VDC [†] 1.5 A 1.56 Ω	Sipolar IDEA [™] Drive Availa 2.33 VDC [†] 5 VDC 1.5 A 700 mA 1.56 Ω 7.2 Ω 1.9 mH 8.7 mH Class B	Single Stack Bipolar IDEA™ Drive Available 2.33 VDC† 5 VDC 12 VDC 1.5 A 700 mA 290 mA 1.56 Ω 7.2 Ω 41.5 Ω 1.9 mH 8.7 mH 54.0 mH 7 W 37 gcm² Class B (Class F ava 8.5 oz (241 g)	Single Stack Bipolar Unipolar IDEA™ Drive Available N 2.33 VDC† 5 VDC 12 VDC 5 VDC 1.5 A 700 mA 290 mA 700 mA 1.56 Ω 7.2 Ω 41.5 Ω 7.2 Ω 1.9 mH 8.7 mH 54.0 mH 4.4 mH 7 W 37 gcm² Class B (Class F available) 8.5 oz (241 g)	Single Stack Bipolar Unipolar** 1DEA™ Drive Available N/A 2.33 VDC† 5 VDC 12 VDC 5 VDC 12 VDC 1.5 A 700 mA 290 mA 700 mA 290 mA 1.56 Ω 7.2 Ω 41.5 Ω 7.2 Ω 41.5 Ω 1.9 mH 8.7 mH 54.0 mH 4.4 mH 27.0 mH 7 W 37 gcm² Class B (Class F available) 8.5 oz (241 g)	Single Stack Class B (Class F available) Unipolar** Class B IDEA™ Drive Available N/A IDEA 2.33 VDC† 5 VDC 12 VDC 2.33 VDC† 1.5 A 700 mA 290 mA 700 mA 290 mA 2.6 A 1.56 Ω 7.2 Ω 41.5 Ω 7.2 Ω 41.5 Ω 0.9 Ω 1.9 mH 8.7 mH 54.0 mH 4.4 mH 27.0 mH 1.33 mH 7 W 37 gcm² Class B (Class F available) Class B	Single Stack Double Stack Bipolar Unipolar** Bipolar IDEA™ Drive Available N/A IDEA™ Drive Available 2.33 VDC† 5 VDC 12 VDC 2.33 VDC† 5 VDC 1.5 A 700 mA 290 mA 700 mA 290 mA 2.6 A 1.3 A 1.56 Ω 7.2 Ω 41.5 Ω 7.2 Ω 41.5 Ω 0.9 Ω 3.8 Ω 1.9 mH 8.7 mH 54.0 mH 4.4 mH 27.0 mH 1.33 mH 8.21 mH 7 W 37 gcm² Class B (Class F available) Class B (Class F available) Class B (Class F available)					

[†]43000 Series with IDEA™ Drive. Contact us if higher voltage motor is desired.

Simple to use IDEA™ Drive software with on-screen buttons and easy-to-understand programming guides

Software program generates motion profiles directly into the system and also contains a "debug" utility allowing line-by-line execution of a motion program for easy troubleshooting.

NOTE: For more information see the Haydon Kerk **IDEA Drive webpages**.

^{**}Unipolar drive gives approximately 30% less thrust than bipolar drive.

Double Stack

(1.331) -- 33.80 --

Single Stack (1.880) 47.75

Double Stack

(2.509) 63.72 Single Stack (3.058) 77.67 — Double Stack

[1.361] 34.57

(1.581) 40.15

Single Stack

(2.130) 54.1 Double/ Stack

[1.661]

T

[2.283] 58

U

Dimensions = (inches) mm

(0.15) | (0.23) | (0.73) | (0.11) | (0.2) | (0.09)

□42.20

Z1 WIDE SLOT THRU Z2 C'BORE SLOT Z3 DEEP

19

19 *Metric threads also available for carriage OVERALL "L" = STROKE + L1 + F -

RGS04 with 43000 Series Size 17 Single or Double Stack Linear Actuator (drawing above) or Double Stack Linear Actuator with integrated programmable IDEA™ Drive (drawing below)

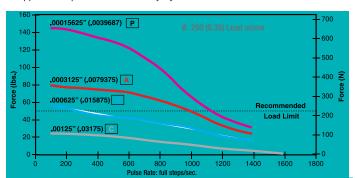
OVERALL "L" = STROKE + L1 + F

4XI-

Z1 THRU HOLE WITH Z2 BORE X Z3 DEEP

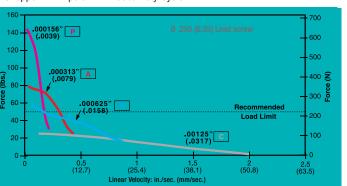
D | D1 | E | F | G | H | I* | L1 | N | N1 | P | Q | S

(0.75) | (0.75) | (0.53) | (1.40) | (1.00) | (0.50) | 4-40 | (0.50) | (0.38) | (1.00) | (0.60) | (0.5) | (0.37)


Z1 THRU HOLE WITH Z2 BORE X Z3 DEEP

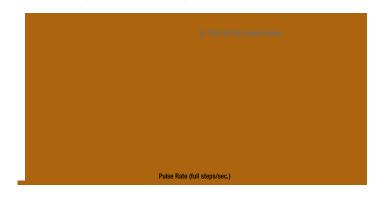
Hybrids: Wiring

Single Stack

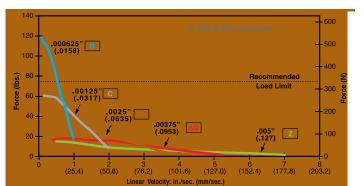

FORCE vs. PULSE RATE

- Chopper - Bipolar - 100% Duty Cycle

FORCE vs. LINEAR VELOCITY


- Chopper - Bipolar - 100% Duty Cycle

Double Stack


FORCE vs. PULSE RATE

- Chopper - Bipolar - 100% Duty Cycle

- Chopper - Bipolar - 100% Duty Cycle

FORCE vs. LINEAR VELOCITY

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply. Ramping can increase Also, deceleration can be used to stop the motor without overshoot.

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction.

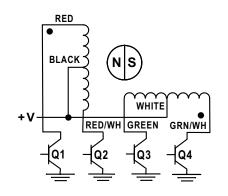
(1.331) 33.80 Single Stack (1.880) 47.75 Double Stack [.063] Dimensions = (inches) mm

13.5 | 35.6 | 25.4 | 12.7 | UNC | 12.7 | 9.52 | 25.4 | 15.2 | 12.7 | 9.4 | 3.8 | 5.8 |

Size 17 43000 Series • Stepping Sequence & Wiring

Hybrids: Stepping Sequence

(0.40)


10.2

Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8		
Unipolar	Q1	Q2	Q3	Q4		
Step						
1	ON	OFF	ON	0FF		
2	OFF	ON	ON	0FF		
3	OFF	ON	OFF	ON		
4	4 ON		0FF	ON		
1	ON	OFF	ON	0FF		

Z1 WIDE SLOT THRU

Note: Half stepping is accomplished by inserting an off state between transitioning phases.

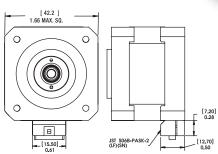
RED (N|S) RED / WHITE [≺] GREEN / WHITE **GREEN**

Metric threads also available for carriage.

the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster.

Size 17 47000 Series • Integrated Connector

Offered alone or with a harness assembly, the integrated connector is RoHS compliant and features a positive latch in order for high connection integrity. The connector is rated up to 3 amps and the mating connector will handle a range of wire gauges from 22 to 28. Ideal for those that want to plug in directly to pre-existing harnesses.


Motor Connector: JST part # S06B-PASK-2

JST part # PAP-06V-S **Mating Connector:**

Haydon Kerk part # 56-1210-5 (12 in. Leads)

Wire to Board Connector: JST part # SPHD-001T-P0.5

Pin #	Bipolar	Unipolar	Color				
1	Phase 2 Start	Phase 2 Start	G/W				
2	Open	Phase 2 Common	-				
3	Phase 2 Finish	Phase 2 Finish	Green				
4	Phase 1 Finish	Phase 1 Finish	R/W				
5	Open	Phase 1 Common	-				
6	Phase 1 Start	Phase 1 Start	Red				

www.haydonkerkpittman.com

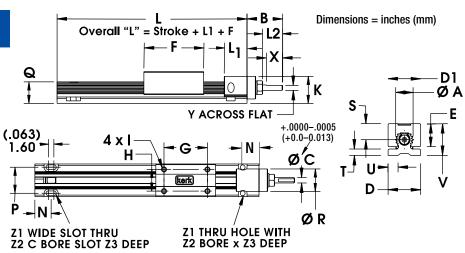
RGS04 Non-Motorized Linear Rails

Screw driven linear rail or linear rail without screw

The non-motorized RGS Series features standard wear compensating, anti-backlash driven carriages to ensure repeatable and accurate

positioning. All moving surfaces include Kerkite® engineered polymers running on Kerkote® TFE coating, providing a strong, stable platform for a variety of linear motion applications.

Identifying the Non-Motorized RGS Part Numbers when Ordering


PrefixFrame StyleFrame Size LoadCoatingDrive / MountingNominal Thread Lead CodeUnique IdentifierRG = Rapid Guide ScrewS = Standard04 = 15 lbs (67 N) (Maximum static load)K = TFE KerkoteA = None0000 = No ScrewSuffix used to identify specific motors or a proprietary suffix assigned to a specific customer application. The identifier0500 = .200-in (12.70) 1000 = 1.000-in (2.54)application. The identifier can apply to either a standard or custom part	RG	S	04	К	Α	0100 —	XXX
	RG = Rapid	•	04 = 15 lbs (67 N) (Maximum	· ·	Mounting	0000 = No Screw 0100 = .100-in (2.54) 0200 = .200-in (5.08) 0500 = .500-in (12.70)	Suffix used to identify specific motors or a proprietary suffix assigned to a specific customer application. The identifier can apply to either a

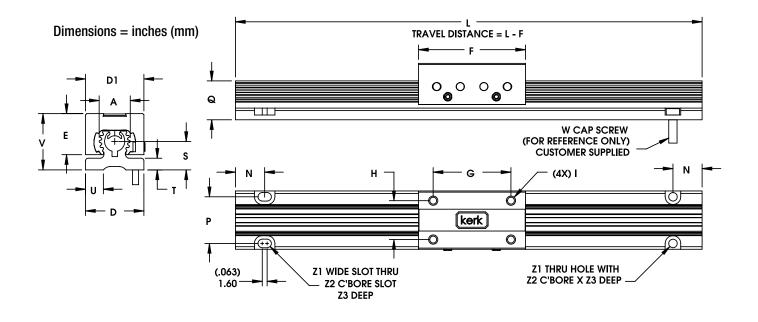
Specifications

	Inch Lead	Thread Lead Code	Nominal Rail Diam.	Nominal Screw Diam.	Typical Drag Torque	Life @ 1/4 Design Load*	Torque-to- Move Load	Design Load	Screw Inertia	
RGS04 Non-Motorized	inch (mm)		inch (mm)	inch (mm)	oz - in (N-m)	inch (cm)	oz-inc/lb (Nm/Kg)	lbs (N)	oz-in-sec²/in (kg-m-sec²/m)	
with Guide	.100 (2.54)	0100			3.0 (0.2)		1.0 (.016)			
Screw	.200 (5.08)	0200	0.4	1/4	4.0 (.03)	100,000,000	1.5 (.023)	1E (G7)	.3 x 10-5	
	.500 (12.70)	0500	(10.2)	(6.4)	5.0 (.04)	(254,000,000)	2.5 (.039)	15 (67)	(6.5 x 10- ⁶)	
	1.000 (25.40)	1000			6.0 (.04)		4.5 (.070)			

NOTE: RGS assemblies with lengths over 36 inches (914.4 mm) and/or leads higher than .5 inch (12.7 mm) will likely have higher drag torque than listed values. *Determined with load in a horizontal position.

Non-Motorized with Lead Screw ensional Drawings

	Α	В	C	D	D1	E	F	G	Н	l*	K	L1	L2	N	Р	Q	R	S	T	U	V	Х	Z1	Z2	Z3
inch	0.40	.83	.1250	0.75	0.75	0.53	1.38	1.00	0.50	4-40	0.6	.53	.47	.375	.60	.50	.52	0.37	0.15	0.23	0.7	.38	0.115	0.20	0.09
mm	10.2	21.1	3.175	19.1	19.1	13.5	35.1	25.4	12.7	UNC	15	13.5	11.9	9.53	15.24	12.7	13.2	9.4	3.8	5.8	18.0	9.7	2.92	5.1	2.3


*Metric carriage hole sizes available M3, M4.

Non-Motorized without Lead Screw sional Drawings

*Metric carriage hole sizes available M3, M4.

To determine what is best for your application see the Linear Rail Applications Checklist.

Material Coatings

inch 0.40 0.75 0.75 0.53 1.4 1.00 0.50 4-40 .375 0.60 .50 0.37 0.15 0.23 0.7 0.11 0.20 0.09

mm | 10.2 | 19.1 | 19.1 | 13.5 | 36 | 25.4 | 12.7 | UNC | 9.53 | 15.24 | 12.7 | 9.4 | 3.8 | 5.8 | 18.0 | 2.8 | 5.1 | 2.3

Compounded with lubricants, reinforcements and thermoplastic polymers, Kerkite Polymers are formulated to provide optimum performance in its target conditions and applications.

- Injection molded
- High performance
- Exceptional wear properties

Kerkote® TFE Coating

A dry lubricant, Kerkote will not become dry and paste-like, and does not attract dirt or debris. Kerkote differs from conventional plating and coating because it is soft, more evenly distributed than other lubricants, and decreases erratic drag torques and unpredictable wear.

- Reduces friction
- Cost effective
- · Long term and maintenance free

Kerkote provides the maximum level of self-lubrication, requiring no additional external lubrication or maintenance.

RGS06 and RGW06 Wide Linear Rails with 43000 Series Hybrid Motor

*Also available with 57000 Series Hybrid Motor (see pages 247-251)

Combines many Haydon Kerk Motion Solutions patented motion technologies into a single integrated, linear motion control system. The Motorized RGS linear rails feature standard wear-compensating, anti-backlash driven carriages to insure repeatable and accurate positioning. All moving surfaces include Kerkite® engineered polymers running on Kerkote® TFE coating, providing a strong, stable platform for a variety of linear motion applications. When integrated with an IDEA Drive, the system combines Haydon® hybrid linear actuator technology with a fully programmable, integrated stepper motor drive. RGS Series Linear Rail with Hybrid 43000 Series Size 17 Linear Actuator Stepper Motors.

Technical specifications for 43000 Series Size 17 Hybrid Linear Actuator Stepper Motors are on page 247.

To determine what is best for your application see the Linear Rail Applications Checklist.

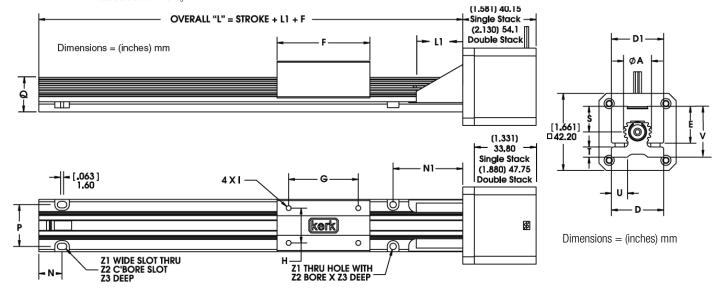
Identifying the RGS06 Part Number Codes when Ordering

RG	S	06	K	_ M	0100	XXX
Prefix	Frame Style	Frame Size Load*	Lubrication	Drive / Mounting	Nominal Thread Lead Code	Unique Identifier
RG = Rapid Guide Screw	S = Standard W = Wide sensor mount capability	06 = 35 lbs (156 N) (Maximum static load)	K = TFE Kerkote®	M = Motorized G = Motorized + IDEA TM integrated programmable drive – USB communications J = Motorized + IDEA TM integrated programmable drive – RS485 communications	0050 = .050-in (1.27) 0079 = .079-in (2.00) 0100 = .100-in (2.54) 0157 = .157-in (4.00) 0197 = .197-in (5.00) 0200 = .200-in (5.08) 0250 = .250-in (6.35) 0375 = .375-in (9.53) 0400 = .400-in (10.16) 0472 = .472-in (12.00) 0500 = .500-in (12.70) 0750 = .750-in (19.05) 0984 = .984-in (25.00) 1000 = 1.000-in (25.4) 1200 = 1.200-in (30.48)	Suffix used to identify specific motors (43000 Single/ Double Stack — or a proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 603 213 6290.

Carriage holes available in Metric sizes M2, M4, M5, M6

242 **Maydon** kerk

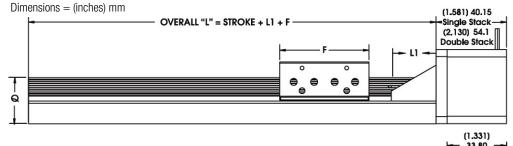


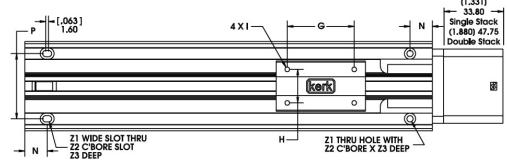
■ RGS06 Linear Rail with 43000 Series Size 17 Single and Double Stack Linear Actuators

Recommended for horizontal loads up to 35 lbs (156 N)

	Α	D	D1	E	F	G	Н	l*	L1	N	N1	Р	Q	S	T	U	V	Z1	Z2	Z3
(inch)	(0.6)	(1.13)	(1.13)	(0.79)	(2.0)	(1.5)	(0.75)	6-32	(1.0)	(0.5)	(1.5)	(0.9)	(0.74)	(0.55)	(0.22)	(0.35)	(1.1)	(0.14)	(0.25)	(0.13)
mm	15.2	28.7	28.7	20.1	50.8	38.1	19.0	UNC	25.4	12.7	38.1	22.9	18.8	13.9	5.6	8.9	27.9	3.6	6.3	3.3

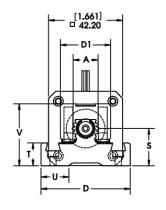
* Metric threads also available for carriage

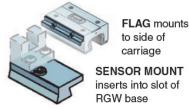



■ RGW06 Wide Linear Rail with 43000 Series Size 17 Single and Double Stack Linear Actuators

Recommended for horizontal loads up to 22 lbs (100 N)

	Α	D	D1	F	G	Н	l*	L1	N	Р	Q	S	T	U	V	Z1	Z2	Z 3
(inch)	(0.6)	(2.0)	(1.13)	(2.0)	(1.5)	(0.75)	6-32	(1.0)	(0.5)	(1.46)	(1.04)	(0.83)	(0.51)	(0.63)	(1.39)	(0.14)	(0.25)	(0.14)
mm	15.2	50.8	28.7	50.8	38.1	19.0	UNC	25.4	12.7	22.9	26.4	21.1	13.0	16.0	35.3	3.6	6.3	3.6

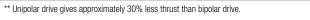

^{*} Metric threads also available for carriage.



RGW06 Sensor Mount Kit Part No. RGW06SK

Sensor mount kits, based on a U-channel optical sensor, are available for the RGW Series. Each kit includes one flag, three sensor mounts, and all mounting hardware. Sensors are not included in the kit and must be ordered separately from the sensor manufacturer.

Motorized


Size 17

Motorized Size 17

Single Stack

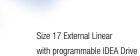
■ 43000 Series Size 17

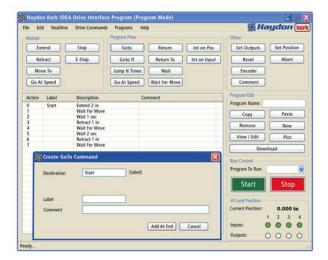
Size 17: 43	mm (1.7-in)	Hybrid Linear	Actuator (1.8°	Step Angle)						
Wiring		Bipolar		Unipo	olar**					
Winding Voltage	2.33 VDC	5 VDC	12 VDC	5 VDC	12 VDC					
Current (RMS)/phase	1.5 A	700 mA	290 mA	700 mA	290 mA					
Resistance/phase	1.56 Ω	7.2 Ω	41.5 Ω	7.2 Ω	41.5 Ω					
Inductance/phase	1.9 mH	8.7 mH	54.0 mH	4.4 mH	27.0 mH					
Power Consumption			7 W							
Rotor Inertia			37 gcm ²							
Insulation Class		Class	B (Class F ava	ilable)						
Weight	8.5 oz (241 g)									
Insulation Resistance	20 ΜΩ									

Double Stack

■ 43000 Series Size 17

Size 17 Double Stack	Size 17 Double Stack: 43 mm (1.7-in) Hybrid Linear Actuator (1.8°												
	Step Angl	e)											
Wiring		Bipolar											
Winding Voltage	2.33 VDC	5 VDC	12 VDC										
Current (RMS)/phase	2.6 A	1.3 A	550 mA										
Resistance/phase	0.9 Ω	3.8 Ω	21.9 Ω										
Inductance/phase	1.33 mH	8.21 mH	45.1 mH										
Power Consumption		13.2 W											
Rotor Inertia		78 gcm ²											
Insulation Class	Clas	s B (Class F avail	able)										
Weight		12.5 oz (352 g)											
Insulation Resistance	20 ΜΩ												

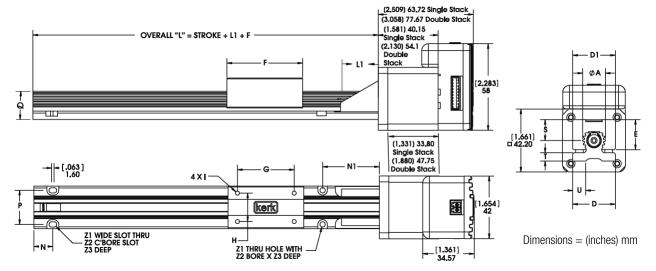

^{* 43000} Series Single Stack with IDEA programmable drive. Contact Haydon Kerk if higher voltage motor is desired. Standard motors are Class B rated for maximum temperature of 130°C.


IDEA™ Drive software is simple to use with on-screen buttons and easy-tounderstand programming

- Fully Programmable
- RoHS Compliant
- USB or RS-485 Communication
- Microstepping Capability Full, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64
- Graphic User Interface
- Auto-population of Drive Parameters Programmable Acceleration/Deceleration

and Current Control

For more information see the <u>IDEA™ Drive Data Sheet</u>

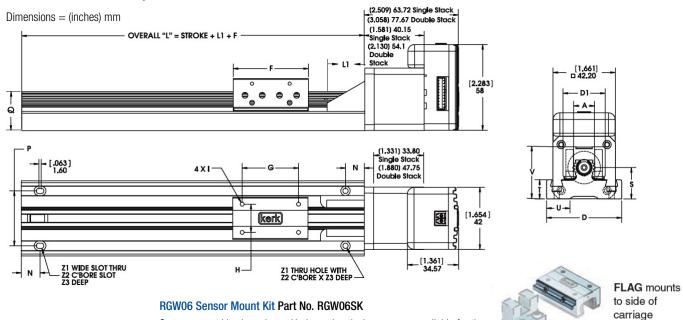


■ RGS06 with 43000 Series Size 17 Single and Double Stack linear motors with IDEA Drive

Recommended for horizontal loads up to 35 lbs (156 N)

	Α	D	D1	E	F	G	Н	l*	L1	N	N1	Р	Q	S	Т	U	V	Z 1	Z2	Z 3
(inch)	(0.6)	(1.13)	(1.13)	(0.79)	(2.0)	(1.5)	(0.75)	6-32	(1.0)	(0.5)	(1.5)	(0.9)	(0.74)	(0.55)	(0.22)	(0.35)	(1.1)	(0.14)	(0.25)	(0.13)
mm	15.2	28.7	28.7	20.1	50.8	38.1	19.0	UNC	25.4	12.7	38.1	22.9	18.8	13.9	5.6	8.9	27.9	3.6	6.3	3.3

^{*} Metric threads also available for carriage.



■ RGW06 Wide Rail with 43000 Series Size 17 Single Stack and Double Stack linear motors with IDEA Drive

Recommended for horizontal loads up to 35 lbs (156 N)

	Α	D	D1	F	G	Н	l*	L1	N	P	Q	S	T	U	V	Z1	Z2	Z 3
(inch)	(0.6)	(2.0)	(1.13)	(2.0)	(1.5)	(0.75)	6-32	(1.0)	(0.5)	(1.46)	(1.04)	(0.83)	(0.51)	(0.63)	(1.39)	(0.14)	(0.25)	(0.14)
mm	15.2	50.8	28.7	50.8	38.1	19.0	UNC	25.4	12.7	22.9	26.4	21.1	13.0	16.0	35.3	3.6	6.3	3.6

* Metric threads also available for carriage.

Sensor mount kits, based on a U-channel optical sensor, are available for the RGW Series. Each kit includes one flag, three sensor mounts, and all mounting hardware. Sensors are not included in the kit and must be ordered separately from the sensor manufacturer.

RGW base

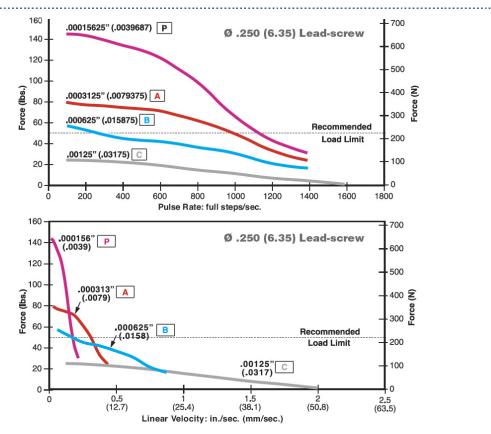
SENSOR MOUNT

inserts into slot of

www.haydonkerkpittman.com

Single Stack

FORCE vs. PULSE RATE


- Chopper

- 100% Duty Cycle

FORCE vs. LINEAR VELOCITY

- Chopper

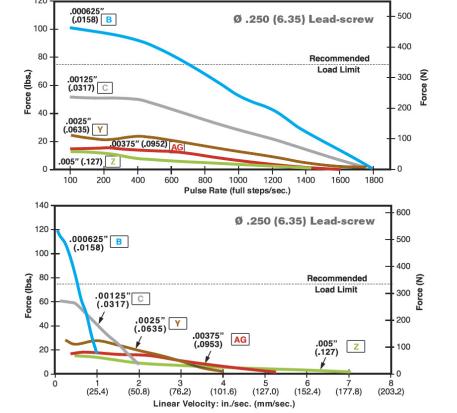
- 100% Duty Cycle

Motorized

Size 17

Double Stack

FORCE vs. PULSE RATE


FORCE vs. LINEAR VELOCITY

Chopper – Bipolar

- 100% Duty Cycle

- Chopper

- 100% Duty Cycle

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply. Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction

www.haydonkerkpittman.com

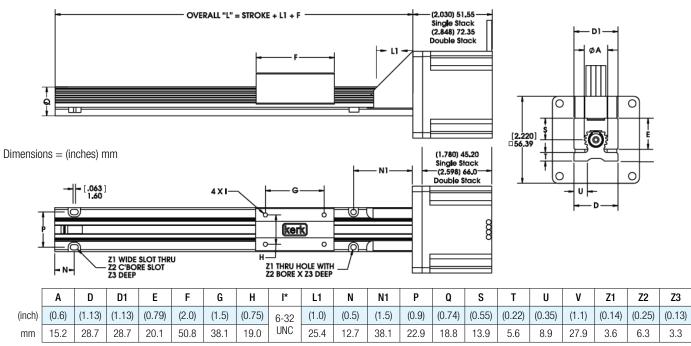
RGS06 and RGW06 Wide Linear Rails with 57000 Series Hybrid Motor

A combination of Haydon Kerk Motion Solutions patented motion technologies into a single integrated, linear motion control system. RGS linear rails feature standard wear-compensating, anti-backlash driven carriages to insure repeatable and accurate positioning. All moving surfaces include Kerkite® engineered polymers running on Kerkote® TFE coating, providing a strong, stable platform for a variety of linear motion applications. RGS Series Linear Rail with Hybrid 57000 Series Size 23 Linear Actuator Stepper Motors

Technical specifications for 57000 Series Size 23 Hybrid Linear Actuator Stepper Motors are on page 249.

To determine what is best for your application see the Linear Rail Applications Checklist

Identifying the BGS Part Number Codes when Ordering

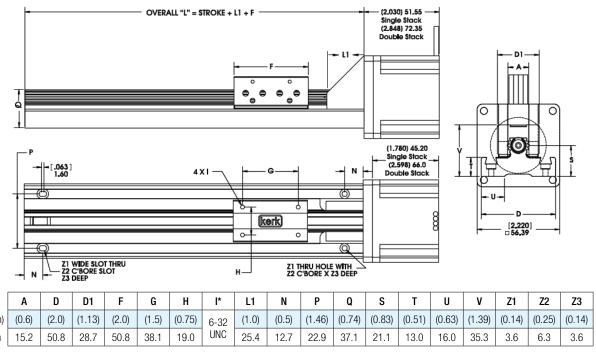

RG	S	06	К	M	0100	XXX
Prefix	Frame Style	Frame Size Load*	Lubrication	Drive / Mounting	Nominal Thread Lead Code	Unique Identifier
RG = Rapid Guide Screw	S = Standard W = Wide sensor mount capability	06 = 35 lbs (156 N) (Maximum static load)	K = TFE Kerkote®	M = Motorized	0050 = .050-in (1.27) 0079 = .079-in (2.00) 0100 = .100-in (2.54) 0157 = .157-in (4.00) 0197 = .197-in (5.00) 0200 = .200-in (5.08) 0250 = .250-in (6.35) 0375 = .375-in (9.53) 0400 = .400-in (10.16) 0472 = .472-in (12.00) 0500 = .500-in (12.70) 0750 = .750-in (19.05) 0984 = .984-in (25.00) 1000 = 1.000-in (25.4) 1200 = 1.200-in (30.48)	Suffix used to identify specific motors (43000 Single/ Double Stack — or a proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (–) as shown above. For assistance call our Engineering Team at 603 213 6290.

Carriage holes available in Metric sizes M3, M4, M5, M6

■ RGS06 with 57000 Series Size 23 Single and Double Stack linear motors

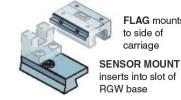
Recommended for horizontal loads up to 35 lbs (156 N)



^{*} Metric threads also available for carriage.

■ RGW06 Wide 57000 Series Size 23 Single Stack and Double Stack linear motors

Dimensions = (inches) mm


Recommended for horizontal loads up to 35 lbs (156 N)

^{*} Metric threads also available for carriage.

RGW06 Sensor Mount Kit Part No. RGW06SK

Sensor mount kits, based on a U-channel optical sensor, are available for the RGW Series. Each kit includes one flag, three sensor mounts, and all mounting hardware. Sensors are not included in the kit and must be ordered separately from the sensor manufacturer.

FLAG mounts to side of

carriage

248 **Haydon** kerk

Single Stack

■ 57000 Series Size 23

Size	23: 57 mm (2.3	-in) Hybrid Linea	ar Actuator (1.8°	Step Angle)							
Wiring		Bipolar		Unipo	olar**						
Winding Voltage	3.25 VDC	5 VDC	12 VDC	5 VDC	12 VDC						
Current (RMS)/phase	2.0 A	1.3 A	.54 A	1.3 A	.54 A						
Resistance/phase	1.63 Ω	3.85 Ω	22.2 Ω	3.85 Ω	22.2 Ω						
Inductance/phase	3.5 mH	10.5 mH	58 mH	5.3 mH	23.6 mH						
Power Consumption			13 W								
Rotor Inertia			166 gcm ²								
Insulation Class		Class	s B (Class F availa	able)							
Weight			18 oz (511 g)								
Insulation Resistance	20 ΜΩ										

^{**} Unipolar drive gives approximately 30% less thrust than bipolar drive. Standard motors are Class B rated for maximum temperature of 130°C.

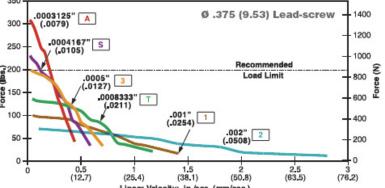
Double Stack

■ 57000 Series Size 23

Size 23 Double Stack:	57 mm (2.3-in) Hyb	rid Linear Actuator	(1.8° Step Angle)				
Wiring		Bipolar					
Winding Voltage	3.25 VDC	5 VDC	12 VDC				
Current (RMS)/phase	3.85 A	2.5 A	1 A				
Resistance/phase	0.98 Ω	2.0 Ω	12.0 Ω				
Inductance/phase	2.3 mH	7.6 mH	35.0 mH				
Power Consumption		25 W Total					
Rotor Inertia		321 gcm ²					
Insulation Class	Cla	ass B (Class F availab	ole)				
Weight		32 oz (958 g)					
Insulation Resistance	20 ΜΩ						

Single Stack

FORCE vs. PULSE RATE


- Chopper Bipolar

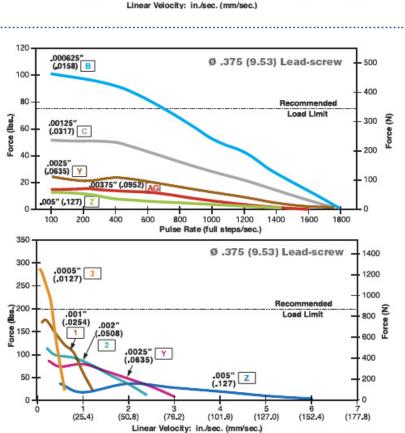
- 100% Duty Cycle

FORCE vs. LINEAR VELOCITY

- Chopper
- Bipolar
- 100% Duty Cycle

.0003125" (.0079375) Ø .375 (9.53) Lead-screw 1400 300 1200 _0004167 250 1000 800 .0005" (.0127) **8** 150 600 .000833" (.0211) T 100 .001" (.0254) 1 .002" (.0508) 2 200 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 Pulse Rate: full steps/sec.

Double Stack


FORCE vs. PULSE RATE

- Chopper
- Bipolar
- 100% Duty Cycle

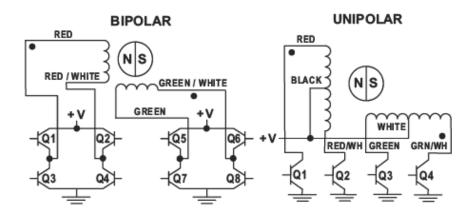
FORCE vs. LINEAR VELOCITY

- Chopper

- 100% Duty Cycle

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply. Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction



■ 43000 Series Size 17 and 57000 Series Size 23

Hybrids: Wiring Hybrids: Stepping Sequence

	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8	
\Box	Unipolar	Q1	Q2	Q3	Q4	
EXTEND	Step					
Q -	1	ON	OFF	ON	OFF	SC
	2	OFF	ON	ON	OFF	RETRACT
▼	3	OFF	ON	OFF	ON] E
	4	ON	OFF	OFF	ON	
	1	ON	OFF	ON	OFF	

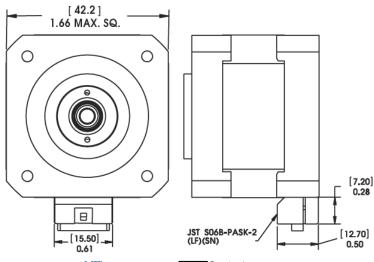
Note: Half stepping is accomplished by inserting an off state between transitioning phases.

Size 17 43000 Series • Integrated Connectors

Haydon Kerk Hybrid Size 17 Single and Double Stack linear actuators are available with an integrated connector. Offered alone or with a harness assembly, this connector is RoHS compliant and features a positive latch in order for high connection integrity. The connector is rated up to 3 amps and the mating connector will handle a range of wire gauges from 22 to 28. This motor is ideal for those that want to plug in directly to pre existing harnesses. In addition to standard configurations, Haydon Kerk Motion Solutions can custom design this motor to meet your specific application requirements.

JST part # S06B-PASK-2 **Motor Connector:**

JST part # PAP-06V-S **Mating Connector:** Haydon Kerk Part #56-1210-5 (12 in. Leads)


Wire to Board Connector: JST part number SPHD-001T-P0.5

Pin #	Bipolar	Unipolar	Color
1	Phase 2 Start	Phase 2 Start	G/W
2	Open	Phase 2 Common	-
3	Phase 2 Finish	Phase 2 Finish	Green
4	Phase 1 Finish	Phase 1 Finish	R/W
5	Open	Phase 1 Common	-
6	Phase 1 Start	Phase 1 Start	Red

Dimensional Drawings

■ Integrated Connector with 43000 Series Size 17

Dimensions = (mm) inches

RGS06 Non-Motorized Linear Rails

- · Screw driven linear rails in standard or wide format
- . Linear rails without screw in standard or wide format

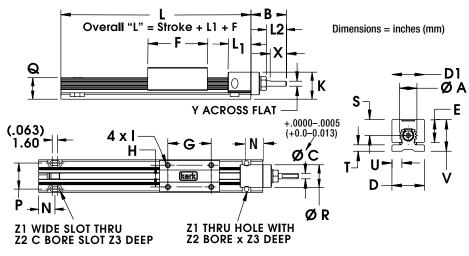
The non-motorized RGS Series features standard wear compensating, anti-backlash driven carriages to ensure repeatable and accurate positioning. All moving surfaces include Kerkite® engineered polymers running on Kerkote® TFE

a strong, stable platform for a variety of linear motion applications. Recommended for horizontal loads up to 35 lbs (156 N).

Identifying the Non-Motorized RGS Part Numbers when Ordering

PrefixFrame StyleFrame Size LoadCoatingDrive / MountingNominal Thread Lead CodeUnique IdentifierRG = Rapid Guide ScrewS = Standard W = Wide Sensor Mount Capability06 = 35 lbs (156 N) (Maximum static load)K = TFE KerkoteA = None B = Inline Screw Motor Mount0100 = .100-in (2.54)Suffix used to identify specific motors or a proprietary suffix assigned to a specific customer application. The identifier	RG	S	06	К	Α	0100	XXX
	RG = Rapid	S = Standard W = Wide Sensor	06 = 35 lbs (156 N) (Maximum	ŭ	Mounting A = None B = Inline Screw Motor	0000 = No Screw 0100 = .100-in (2.54) 0200 = .200-in (5.08) 0500 = .500-in (12.70)	Suffix used to identify specific motors or a proprietary suffix assigned to a specific customer application. The identifier can apply to either a

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 603 213 6290.


Specifications

		Inch Lead	Thread Lead Code	Nominal Rail Diam.	Nominal Screw Diam.	Typical Drag Torque	Life @ 1/4 Design Load*	Torque-to- Move Load	Design Load*	Screw Inertia	
Nor	RGS06 1-Motorized	inch (mm)		inch (mm)	inch (mm)	oz - in (N-m)	inch (cm)	oz-inc/lb (Nm/Kg)	lbs (N)	oz-in-sec²/in (kg-m-sec²/m)	
W	vith Guide Screw	.100 (2.54)	0100			4.0 (0.3)		1.0 (.016)			
	SCIEW	.200 (5.08)	0200	0.6	3/8	5.0 (.04)	100,000,000	1.5 (.023)	25 (156)	1.5 x 10-5	
		.500 (12.70)	0500	(15.2)	(9.5)	6.0 (.04)	(254,000,000)	2.5 (.039)	35 (156)	(4.2 x 10-6)	
		1.000 (25.40)	1000			7.0 (.05)		4.5 (.070)			

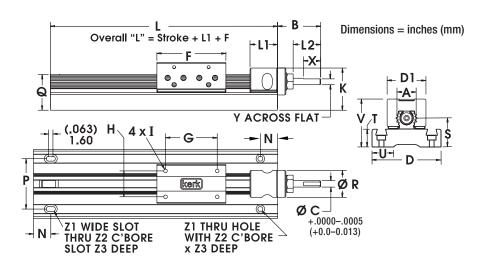
NOTE: RGS assemblies with lengths over 36 inches (914.4 mm) and/or leads higher than .5 inch (12.7 mm) will likely have higher drag torque than listed values. *Determined with load in a horizontal position.

Non-Motorized with Lead Screw mensional Drawings

- Screw Driven
- Standard Frame

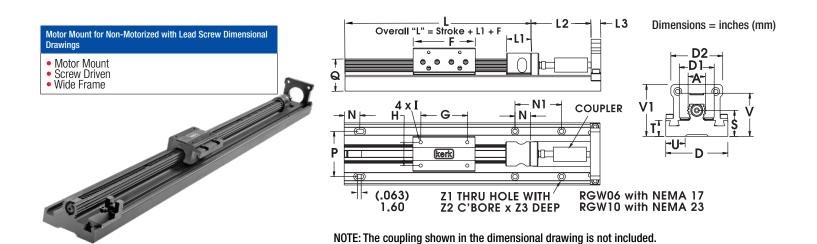
RGS06 Non-Motorized, Screw Driven

	Α	В	C	D	D1	E	F	G	Н	l*	K	L1	L2	N	P	Q	R	S	T	U	V	Х	Z1	Z2	Z3
inch	0.60	1.25	.1875	1.13	1.13	0.79	2.0	1.50	0.750	6-32	0.9	.80	.80	.50	.90	.74	.80	.55	.22	.35	1.1	.50	.14	.25	.13
mm	15.2	31.8	4.762	28.6	28.6	20.1	51	38.1	19.1	UNC	23	20.3	20.3	12.7	22.8	18.8	20.3	14.0	5.6	8.9	28	12.7	3.6	6.4	3.3


*Metric carriage hole sizes available M3, M4, M5, M6.

252 **Haydon kerk**

Non-Motorized with Lead Screw imensional Drawings


Screw Driven Wide Frame

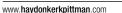
RGW06 Wide Series, Non-Motorized, Screw Driven

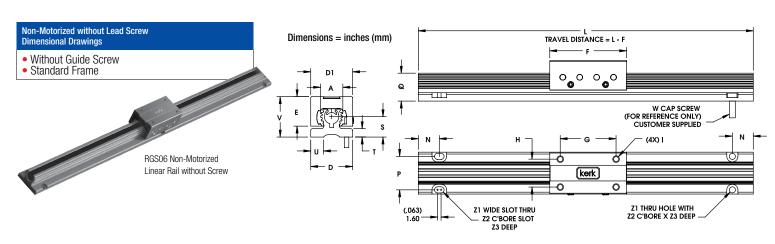
			,		· · · · · · ·	.,																			
	Α	В	С	D	D1	F	G	Н	l*	K	L1	L2	N	P	Q	R	S1	T	U	٧	Х	Υ	Z1	Z2	Z3
inch	0.60	1.25	.1875	2.0	1.13	2.0	1.50	0.750	6-32	1.2	.80	.80	.50	1.46	1.04	.80	.83	.51	.63	1.4	.50	.170	.14	.25	.14
mm	15.2	31.8	4.762	50.8	28.6	50.8	38.1	19.1	UNC	30	20.3	20.3	12.7	37.0	26.4	20.3	21.2	13.0	16.0	36	12.7	4.32	3.6	6.4	3.6

*Metric carriage hole sizes available M3, M4, M5, M6.

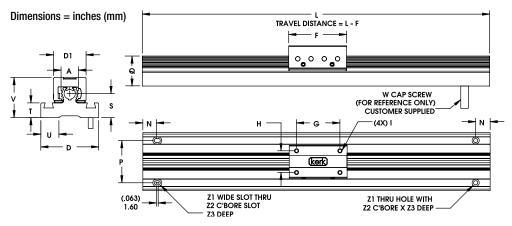
RGW06 Motor Mount, Wide Series, Non-Motorized, Screw Driven

		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	····ou····		,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,																	
	Α	В	C	D	D1	F	G	Н	l*	K	L1	L2	N	Р	Q	R	S1	T	U	٧	Χ	Υ	Z1	Z2	Z 3
inch	0.60	1.25	.1875	2.0	1.13	2.0	1.50	0.750	6-32	1.2	.80	.80	.50	1.46	1.04	.80	.83	.51	.63	1.4	.50	.170	.14	.25	.14
mm	15.2	31.8	4.762	50.8	28.6	50.8	38.1	19.1	UNC	30	20.3	20.3	12.7	37.0	26.4	20.3	21.2	13.0	16.0	36	12.7	4.32	3.6	6.4	3.6


*Metric carriage hole sizes available M3, M4, M5, M6.


RGW06 Sensor Mount Kits

Sensor mounting kits based on U-channel optical sensor. Each kit includes one flag, three sensor mounts and all mounting hardware. Sensors are not included in the kit and must be ordered separately from sensor manufacturer. Part # RGW06SK


RGS06 Non-Motorized, Without Screw Driven

		Α	D	D1	Е	F	G	Н	I *	N	P	Q	S	T	U	V	Z1	Z2	Z3
	inch	0.60	1.13	1.13	.79	2.0	1.50	.75	6-32	.50	.90	.74	.55	.22	.35	1.1	.14	.25	.13
ĺ	mm	15.2	28.6	28.6	20.1	51	38.1	19	UNC	12.7	22.8	18.8	14	5.6	8.9	28	3.6	6.4	3.3

*Metric carriage hole sizes available M3, M4, M5, M6

Non-Motorized without Lead Screw nsional Drawings

 Without Guide Screw Wide Frame

RGS06 Wide Series, Non-Motorized, Without Screw Driven

	Α	D	D1	F	G	Н	I *	N	Р	Q	S	T	U	V	Z1	Z2	Z3
inch	0.60	1.13	1.13	2.0	1.50	.75	6-32	.50	1.46	1.04	.83	.51	.63	1.4	.14	.25	.14
mm	15.2	28.6	28.6	51	38.1	19	UNC	12.7	37	26.4	21.2	13	16	36	3.6	6.4	3.6

*Metric carriage hole sizes available M3, M4, M5, M6.

To determine what is best for your application see the Linear Rail Applications Checklist.

Material Coatings

Compounded with lubricants, reinforcements and thermoplastic polymers, Kerkite Polymers are formulated to provide optimum performance in its target conditions and applications.

- Injection molded
- High performance
- Exceptional wear properties

Kerkote® TFE Coating

A dry lubricant, Kerkote will not become dry and paste-like, and does not attract dirt or debris. Kerkote differs from conventional plating and coating because it is soft, more evenly distributed than other lubricants, and decreases erratic drag torques and unpredictable wear.

- · Reduces friction
- Cost effective
- Long term and maintenance free

Kerkote provides the maximum level of self-lubrication, requiring no additional external lubrication or maintenance.

RGW06 Non-Motorized Linear Rails

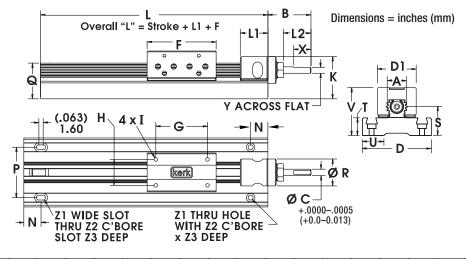
- · Screw driven linear rails in wide format
- · Linear rails without screw in wide format

The non-motorized RGW Series features standard wear compensating, anti-backlash driven carriages to ensure repeatable and accurate positioning. All moving surfaces include Kerkite engineered polymers running on Kerkote® TFE coating, providing a strong, stable platform for a variety of linear motion applications. Recommended for horizontal loads up to 35 lbs (156 N).

To determine what is best for your application see the Linear Rail Applications Checklist.

Identifying the Non-Motorized RGW Part Numbers when Ordering

RG	W	06	К	- A	0100 —	XXX
Prefix RG = Rapid Guide Screw	Frame Style W = Wide Sensor Mount Capability	Frame Size Load 06 = 35 lbs (156 N) (Maximum static load)	Coating K = TFE Kerkote	Drive / Mounting A = None B = Inline Screw Motor Mount	Nominal Thread Lead Code 0000 = No Screw 0100 = .100-in (2.54) 0200 = .200-in (5.08) 0500 = .500-in (12.70) 1000 = 1.000-in (2.54)	Unique Identifier Suffix used to identify specific motors or a proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part


Specifications

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 603 213 6290.

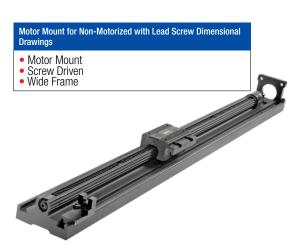
	Inch Lead	Thread Lead Code	Nominal Rail Diam.	Nominal Screw Diam.	Typical Drag Torque	Life @ 1/4 Design Load*	Torque-to- Move Load	Design Load*	Screw Inertia
RGW06 Non-Motorized	inch (mm)		inch (mm)	inch (mm)	oz - in (N-m)	inch (cm)	oz-inc/lb (Nm/Kg)	lbs (N)	oz-in-sec²/in (kg-m-sec²/m)
with Lead	.100 (2.54)	0100			4.0 (0.3)		1.0 (.016)		
Screw	.200 (5.08)	0200	0.6	3/8	5.0 (.04)	100,000,000	1.5 (.023)	0E (1EC)	1.5 x 10- ⁵
	.500 (12.70)	0500	(15.2)	(9.5)	6.0 (.04)	(254,000,000)	2.5 (.039)	35 (156)	(4.2 x 10-6)
	1.000 (25.40)	1000			7.0 (.05)		4.5 (.070)		

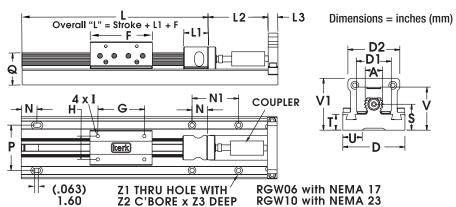
NOTE: RGW assemblies with lengths over 36 inches (914.4 mm) and/or leads higher than .5 inch (12.7 mm) will likely have higher drag torque than listed values. *Determined with load in a horizontal position.

RGW06 Wide Series, Non-Motorized, Screw Driven

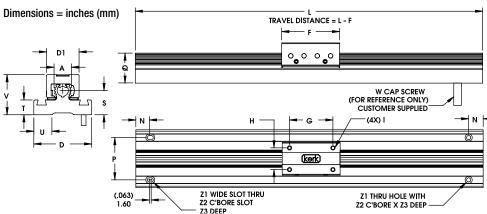
	Α	В	C	D	D1	F	G	Н	l*	K	L1	L2	N	P	Q	R	S1	T	U	V	X	Υ	Z1	Z2	Z3
inch	0.60	1.25	.1875	2.0	1.13	2.0	1.50	0.750	6-32	1.2	.80	.80	.50	1.46	1.04	.80	.83	.51	.63	1.4	.50	.170	.14	.25	.14
mm	15.2	31.8	4.762	50.8	28.6	50.8	38.1	19.1	UNC	30	20.3	20.3	12.7	37.0	26.4	20.3	21.2	13.0	16.0	36	12.7	4.32	3.6	6.4	3.6

*Metric carriage hole sizes available M3, M4, M5, M6.





www.haydonkerkpittman.com


NOTE: The coupling shown in the dimensional drawing is not included.

RGW06 Motor Mount, Wide Series, Non-Motorized, Screw Driven

	Α	В	С	D	D1	F	G	Н	l*	K	L1	L2	N	Р	Q	R	S1	T	U	V	Χ	Υ	Z1	Z2	Z3
inc	0.60	1.25	.1875	2.0	1.13	2.0	1.50	0.750	6-32	1.2	.80	.80	.50	1.46	1.04	.80	.83	.51	.63	1.4	.50	.170	.14	.25	.14
mr	15.2	31.8	4.762	50.8	28.6	50.8	38.1	19.1	UNC	30	20.3	20.3	12.7	37.0	26.4	20.3	21.2	13.0	16.0	36	12.7	4.32	3.6	6.4	3.6

*Metric carriage hole sizes available M3, M4, M5, M6.

RGW06 Wide Series, Non-Motorized, Without Screw Driven

	Α	D	D1	F	G	Н	l*	N	P	Q	S	Т	U	٧	Z1	Z2	Z 3
inch	0.60	1.13	1.13	2.0	1.50	.75	6-32	.50	1.46	1.04	.83	.51	.63	1.4	.14	.25	.14
mm	15.2	28.6	28.6	51	38.1	19	UNC	12.7	37	26.4	21.2	13	16	36	3.6	6.4	3.6

*Metric carriage hole sizes available M3, M4, M5, M6.

Material Coatings

Kerkite® Polymers

Compounded with lubricants, reinforcements and thermoplastic polymers.

- · Injection molded
- High performance
- · Exceptional wear properties

Kerkote® TFE Coating

A dry lubricant, Kerkote will not become dry and paste-like, and does not attract dirt or debris.

- Reduces friction
- Cost effective
- · Requires no additional external lubrication or maintenance

Accessory

RGW06 Sensor Mount Kits

Sensor mounting kits based on U-channel optical sensor. Each kit includes one flag, three sensor mounts and all mounting hardware. Sensors are

not included in the kit and must be ordered separately from sensor manufacturer. Part # RGW06SK

RGS08 Linear Rail for Heavier Weight Applications with 57000 Series Size 23 Single and Double Stack Hybrid Linear Actuators

A combination of Haydon Kerk Motion Solutions patented motion technologies into a single integrated, linear motion control system. RGS linear rails feature standard wear-compensating, anti-backlash driven carriages to insure repeatable and accurate positioning. All moving surfaces include Kerkite® engineered polymers running on Kerkote® TFE coating, providing

Technical specifications for 57000 Series Size 23 Hybrid Linear Actuator Stepper Motors are on page 3.

To determine what is best for your application see the Linear Rail Applications Checklist.

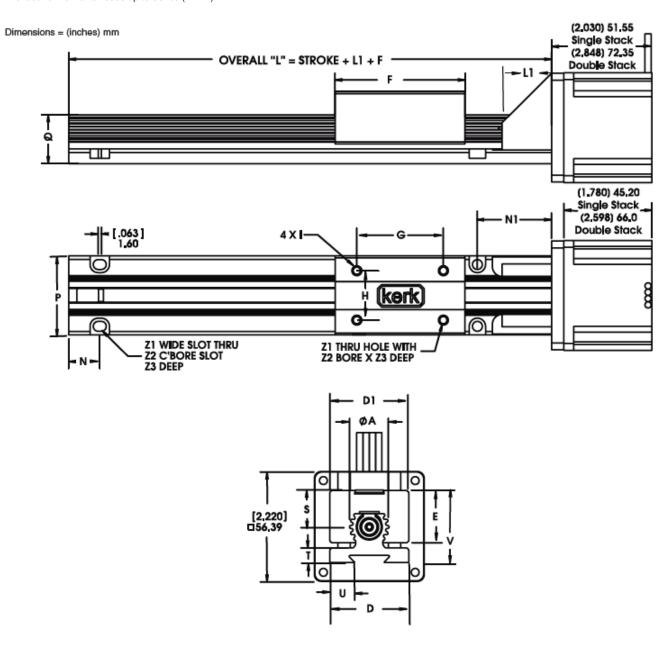
a strong, stable platform for a variety of linear motion applications.

Identifying the RGS08 Part Number Codes when Ordering

RG	S	08	К	M	0100 -	XXX
Prefix	Frame Style	Frame Size Load*	Lubrication	Drive / Mounting	Nominal Thread Lead Code	Unique Identifier
RG = Rapid Guide Screw	S = Standard	08 = 50 lbs (222 N) (Maximum static load)	K = TFE Kerkote® X = Special (example: Kerkote with grease)	M = Motorized	0098 = .098-in (2.50) 0100 = .100-in (2.54) 0197 = .197-in (5.00) 0200 = .200-in (5.08) 0500 = .500-in (12.70) 0630 = .630-in (16.00) 1000 = 1.000-in (25.4)	Suffix used to identify specific motors (43000 Single/ Double Stack — or a proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (–) as shown above. For assistance call our Engineering Team at 603 213 6290.

Carriage holes available in Metric sizes M3, M4, M5, M6



Motorized Size 23 Single and **Double Stack**

■ RGS08 with 57000 Series Size 23 Single and Double Stack Linear Actuators

Recommended for horizontal loads up to 50 lbs (222 N)

	Α	D	D1	E	F	G	Н	l*	L1	N	N1	Р	Q	S	Т	U	V	Z 1	Z 2	Z 3
(inch)	(0.8)	(1.6)	(1.6)	(1.06)	(2.7)	(1.75)	(1.0)	10-20	(1.0)	(0.625)	(1.5)	(1.25)	(1.0)	(0.74)	(0.3)	(0.51)	(1.47)	(0.2)	(0.33)	(0.19)
mm	20.3	40.6	40.6	26.9	68.6	44.5	25.4	UNC	25.4	15.9	38.1	15.9	25.4	18.8	7.6	12.9	37.3	5.1	8.4	4.8

^{*} Metric threads also available for carriage.

258 **Haydon** kerk

Size 23 Single and **Double Stack**

Motorized

✓ RGS Series • RGS08 • Specifications

Single Stack

■ 57000 Series Size 23

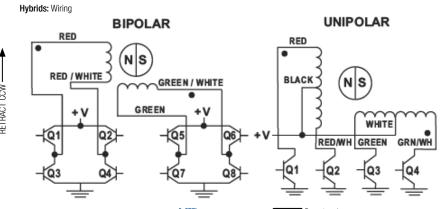
Size	23: 57 mm (2.3	-in) Hybrid Linea	ar Actuator (1.8°	Step Angle)	
Wiring		Bipolar		Unipo	olar**
Winding Voltage	3.25 VDC	5 VDC	12 VDC	5 VDC	12 VDC
Current (RMS)/phase	2.0 A	1.3 A	.54 A	1.3 A	.54 A
Resistance/phase	1.63 Ω	3.85 Ω	22.2 Ω	3.85 Ω	22.2 Ω
Inductance/phase	3.5 mH	10.5 mH	58 mH	5.3 mH	23.6 mH
Power Consumption			13 W		
Rotor Inertia			166 gcm ²		
Insulation Class		Clas	s B (Class F availa	able)	
Weight			18 oz (511 g)		
Insulation Resistance			20 MΩ		

Standard motors are Class B rated for maximum temperature of 130°C.

Double Stack

■ 57000 Series Size 23

Size 23 Double Stack:	57 mm (2.3-in) Hyb	rid Linear Actuator	(1.8° Step Angle)				
Wiring		Bipolar					
Winding Voltage	3.25 VDC	5 VDC	12 VDC				
Current (RMS)/phase	3.85 A	2.5 A	1 A				
Resistance/phase	0.98 Ω	2.0 Ω	12.0 Ω				
Inductance/phase	2.3 mH	7.6 mH	35.0 mH				
Power Consumption	25 W Total						
Rotor Inertia		321 gcm ²					
Insulation Class	Cla	ass B (Class F availat	ole)				
Weight		32 oz (958 g)					
Insulation Resistance 20 MΩ							



Size 23 57000 Series • Stepping Sequence & Wiring

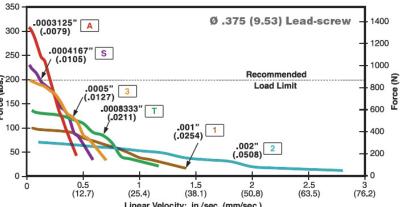
Hybrids: Stepping Sequence

	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8
찟	Unipolar	Q1	Q2	Q3	Q4
EXTEND CW	Step				
≷	1	ON	OFF	ON	OFF
	2	OFF	ON	ON	OFF
•	3	OFF	ON	OFF	ON
	4	ON	OFF	OFF	ON
	1	ON	OFF	ON	OFF
				**	

Note: Half stepping is accomplished by inserting an off state between transitioning phases.

**** Haydon** kerk www.haydonkerkpittman.com

^{**} Unipolar drive gives approximately 30% less thrust than bipolar drive.

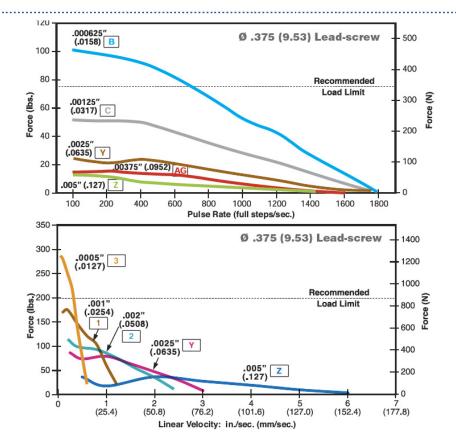

Single Stack

FORCE vs. PULSE RATE

- Chopper - Bipolar - 100% Duty Cycle

.0003125" (.0079375) Ø .375 (9.53) Lead-screw 1400 1200 (.010584) S 1000 800 .0005" (.0127) 600 .000833" (.0211) ⊤ 100 400 .001" (.0254) 1 200 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 Pulse Rate: full steps/sec.

FORCE vs. LINEAR VELOCITY - Chopper - Bipolar - 100% Duty Cycle


Double Stack

FORCE vs. PULSE RATE

FORCE vs. LINEAR VELOCITY

- Chopper - Bipolar - 100% Duty Cycle

- Chopper - Bipolar - 100% Duty Cycle

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply. Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot. With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction

www.haydonkerkpittman.com

RGS08 Non-Motorized Linear Rails

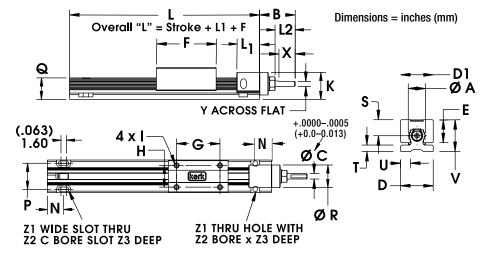
Screw driven linear rail or linear rail without screw

The non-motorized RGS Series features standard wear compensating, anti-backlash driven carriages to ensure repeatable and accurate positioning. All moving surfaces include Kerkite® engineered polymers running on Kerkote® TFE coating, providing

a strong, stable platform for a variety of linear motion applications. Recommended for horizontal loads up to 50 lbs (222 N).

Identifying the Non-Motorized RGS Part Numbers when Ordering

RG	S	08	К	A	0100	_ XXX
Prefix RG = Rapid Guide Screw	Frame Style S = Standard	Frame Size Load 08 = 50 lbs (222 N) (Maximum static load)	Coating K = TFE Kerkote	Drive / Mounting A = None	Nominal Thread Lead Code 0000 = No Screw 0100 = .100-in (2.54) 0200 = .200-in (5.08) 0500 = .500-in (12.70) 1000 = 1.000-in (2.54)	Unique Identifier Suffix used to identify specific motors or a proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part


NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 603 213 6290.

Specifications

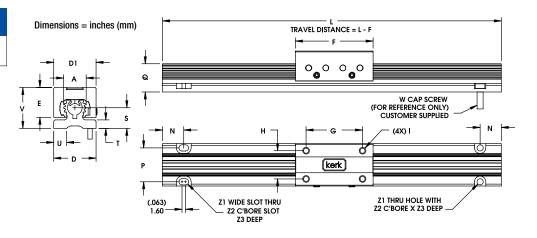
	Inch Lead	Thread Lead Code	Nominal Rail Diam.	Nominal Screw Diam.	Typical Drag Torque	Life @ 1/4 Design Load*	Torque-to- Move Load	Design Load*	Screw Inertia
RGS08 Non-Motorized	inch (mm)		inch (mm)	inch (mm)	oz - in (N-m)	inch (cm)	oz-inc/lb (Nm/Kg)	lbs (N)	oz-in-sec²/in (kg-m-sec²/m)
with Lead	.100 (2.54)	0100			5.0 (0.4)		1.1 (.018)		
Screw	.200 (5.08)	0200	0.8	1/2	6.0 (.04)	100,000,000	1.7 (.027)	50 (222)	5.2 x 10- ⁵
	.500 (12.70)	0500	(20.3)	(12.7)	7.0 (.05)	(254,000,000)	3.0 (.047)	30 (222)	(20.0 x 10-6)
	1.000 (25.40)	1000			8.0 (.06)		6.0 (.096)		

NOTE: RGS assemblies with lengths over 36 inches (914.4 mm) and/or leads higher than .5 inch (12.7 mm) will likely have higher drag torque than listed values. *Determined with load in a horizontal position.

Non-Motorized with Lead Screw nsional Drawings Screw Driven Standard Frame

RGS08 Non-Motorized, Screw Driven

	Α	В	C	D	D1	E	F	G	Н	I *	K	L1	L2	N	Р	Q	R	S	T	U	V	Χ	Z 1	Z2	Z 3
inch	0.80	1.50	.250	1.60	1.60	1.06	2.7	1.75	1.00	10-24	1.3	1.09	.77	.625	1.25	1.0	1.04	.74	.30	.51	1.47	.70	.22	.33	.19
mm	20.3	38.1	6.35	40.6	40.6	26.9	69	44.4	25.4	UNC	33	27.7	19.6	15.8	31.75	25.4	26.4	18.8	7.6	13	37.3	17.8	5.5	8.4	4.8


*Metric carriage hole sizes available M3, M4, M5, M6.

Non-Motorized without Lead Screw

 Without Guide Screw Standard Frame

RGS08 Non-Motorized, Without Screw Driven

	Α	D	D1	E	F	G	Н	l*	N	Р	Q	S	T	U	٧	Z1	Z2	Z3
inch	0.80	1.60	1.60	1.06	2.7	1.75	1.00	10-24	.625	1.25	1.00	.74	.30	.51	1.47	.20	.33	.19
mm	20.3	40.6	40.6	26.9	69	44.4	25.4	UNC	15.8	31.7	25.4	18.8	7.6	13	37.3	5.1	8.3	4.8

*Metric carriage hole sizes available M3, M4, M5, M6.

To determine what is best for your application see the Linear Rail Applications Checklist.

Material Coatings

Kerkite® Polymers

Compounded with lubricants, reinforcements and thermoplastic polymers, Kerkite Polymers are formulated to provide optimum performance in its target conditions and applications.

- · Injection molded
- High performance
- Exceptional wear properties

Kerkote® TFE Coating

A dry lubricant, Kerkote will not become dry and paste-like, and does not attract dirt or debris. Kerkote differs from conventional plating and coating because it is soft, more evenly distributed than other lubricants, and decreases erratic drag torques and unpredictable wear.

- Reduces friction
- · Cost effective
- Long term and maintenance free

Kerkote provides the maximum level of self-lubrication, requiring no additional external lubrication or maintenance.

RGS10 and RGW10 Wide Linear Rails

with 57000 Series Size 23 Hybrid Linear Actuators

Driven by a Size 23 Hybrid motor, the 25.4 mm (1-inch) diameter splined carriage guide has been designed to carry a weight load up to 100 lbs (445 N). A high performance motion control system combines power and precison. The system combines many Haydon Kerk Motion Solutions patented motion technologies into a single integrated, linear motion control system. The Motorized RGS linear rails feature standard wear-compensating, anti-backlash driven carriages to insure repeatable and accurate positioning. All moving surfaces include Kerkite® engineered polymers running on Kerkote® TFE coating, providing a strong, stable platform for a variety of linear motion applications. RGS Series Linear Rail with Hybrid 57000 Series Size 23 Linear Actuator Stepper Motors

Technical specifications for 57000 Series Size 23 Hybrid Linear Actuator Stepper Motors are on page 3.

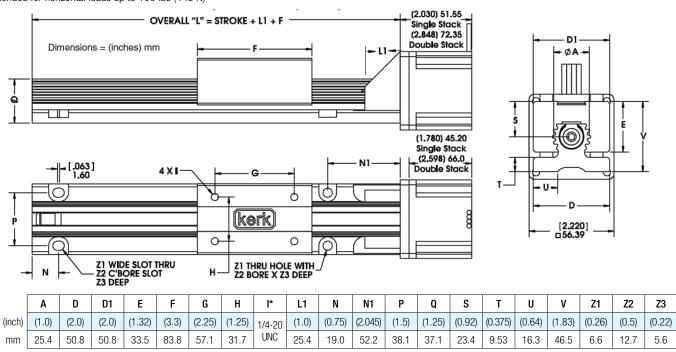
To determine what is best for your application see the Linear Rail Applications Checklist.

■ Identifying the RGS10 and RGW10 Part Number Codes when Ordering

RG	S	10	K	М	_	0100	_	XXX
Prefix	Frame Style	Frame Size Load*	Lubrication	Drive / Mounting		Nominal Thread Lead Code		Unique Identifier
RG = Rapid Guide Screw	S = StandardW = Wide sensor mount capability	10 = 100 lbs (445 N) (Maximum static load)	K = TFE Kerkote®	M = Motorized		0100 = .100-in (2.54) 0125 = .125-in (3.18) 0200 = .200-in (5.08) 0250 = .250-in (6.35) 0315 = .315-in (8.00) 0500 = .500-in (12.70) 0630 = .630-in (16.00) 1000 = 1.000-in (25.4) 1500 = 1.500-in (38.10) 2000 = 2.000-in (50.80)		Suffix used to identify specific motors (43000 Single/ Double Stack — or a proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

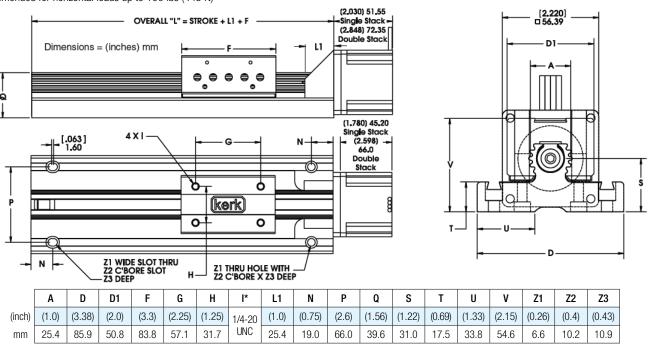
NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 603 213 6290.

Carriage holes available in Metric sizes M3, M4, M5, M6



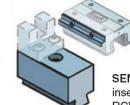
Motorized Size 23

■ RGS10 with 57000 Series Size 23 Single and Double Stack Linear Actuators


Recommended for horizontal loads up to 100 lbs (445 N)

^{*} Metric threads also available for carriage.

■ RGW10 Wide with 57000 Series Size 23 Single and Double Stack Linear Actuators


Recommended for horizontal loads up to 100 lbs (445 N)

^{*} Metric threads also available for carriage

RGW10 Sensor Mount Kit Part No. RGW10SK

Sensor mount kits, based on a U-channel optical sensor, are available for the RGW Series. Each kit includes one flag, three sensor mounts, and all mounting hardware. Sensors are not included in the kit and must be ordered separately from the sensor manufacturer.

FLAG mounts to side of carriage

SENSOR MOUNT inserts into slot of RGW base

264 **Haydon** kerk

Single Stack

■ 57000 Series Size 23

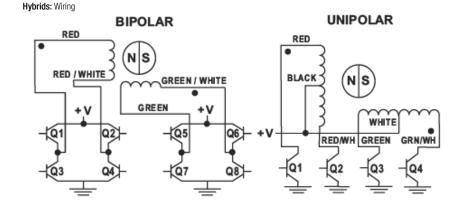
Size	Size 23: 57 mm (2.3-in) Hybrid Linear Actuator (1.8° Step Angle)											
Wiring		Bipolar		Unipo	olar**							
Winding Voltage	3.25 VDC	5 VDC	12 VDC	5 VDC	12 VDC							
Current (RMS)/phase	2.0 A	1.3 A	.54 A	1.3 A	.54 A							
Resistance/phase	1.63 Ω	1.63 Ω 3.85 Ω 22.2 Ω 3.85 Ω 22.2 Ω										
Inductance/phase	3.5 mH 10.5 mH 58 mH 5.3 mH 23.											
Power Consumption			13 W									
Rotor Inertia			166 gcm ²									
Insulation Class		Clas	s B (Class F availa	able)								
Weight	18 oz (511 g)											
Insulation Resistance	20 ΜΩ											

^{**} Unipolar drive gives approximately 30% less thrust than bipolar drive. Standard motors are Class B rated for maximum temperature of 130°C.

Double Stack

■ 57000 Series Size 23

Size 23 Double Stack:	57 mm (2.3-in) Hyb	rid Linear Actuator	(1.8° Step Angle)
Wiring		Bipolar	
Winding Voltage	3.25 VDC	5 VDC	12 VDC
Current (RMS)/phase	3.85 A	2.5 A	1 A
Resistance/phase	0.98 Ω	2.0 Ω	12.0 Ω
Inductance/phase	2.3 mH	7.6 mH	35.0 mH
Power Consumption		25 W Total	
Rotor Inertia		321 gcm ²	
Insulation Class	Cla	ass B (Class F availab	ole)
Weight	32 oz (958 g)		
Insulation Resistance		20 MΩ	



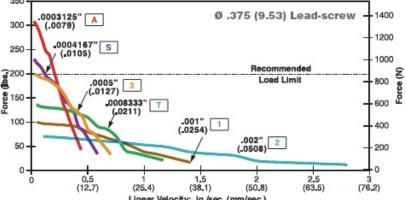
Size 23 57000 Series • Stepping Sequence & Wiring

Hybrids: Stepping Sequence

	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8
Φ	Unipolar	Q1	Q2	Q3	Q4
EXTEND CW	Step				
₩ 	1	ON	OFF	ON	OFF
	2	OFF	ON	ON	OFF
•	3	OFF	ON	0FF	ON
	4	ON	OFF	0FF	ON
	1	ON	OFF	ON	OFF

Note: Half stepping is accomplished by inserting an off state between transitioning phases.

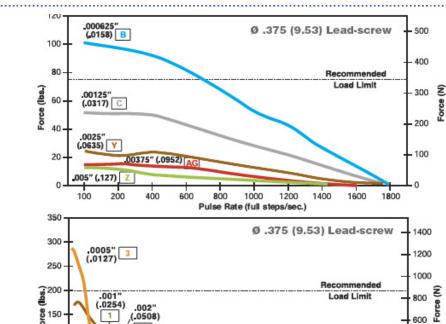
Maydon kerk


Single Stack

FORCE vs. PULSE RATE

- Chopper Bipolar
- 100% Duty Cycle

- FORCE vs. LINEAR VELOCITY Chopper
- Bipolar
- 100% Duty Cycle


.0003125" (.0079375) A Ø .375 (9.53) Lead-screw 1400 1200 .0004167 (.010584) S 1000 Load Limit 800 _0005" (_0127) 3 g 150-600 .000833" (.0211) 🗍 100 400 .001" (.0254) .002" (.0508) 2 200 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 Pulse Rate: full steps/sec.

Double Stack

FORCE vs. PULSE RATE

- Chopper – Bipolar
- 100% Duty Cycle

FORCE vs. LINEAR VELOCITY Chopper

- Bipolar
- 100% Duty Cycle

266 **Haydon** kerk

AMETEK

100

RGS10 Non-Motorized Linear Rails

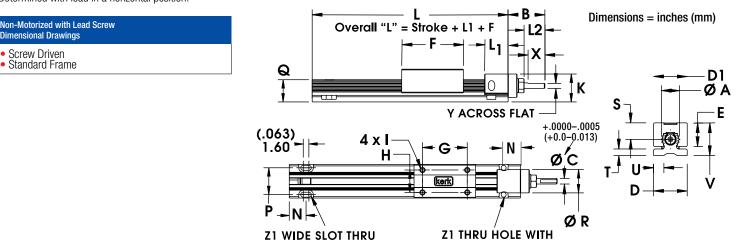
- Screw driven linear rails in standard or wide format
- . Linear rails without screw in standard or wide format

The non-motorized RGS Series features standard wear compensating, anti-backlash driven carriages to ensure repeatable and accurate positioning. All moving surfaces include Kerkite® engineered polymers running on Kerkote® TFE

a strong, stable platform for a variety of linear motion applications. Recommended for horizontal loads up to 100 lbs (445 N).

RGW10 Wide Series, Non-Motorized Screw Driven Linear Rail

Identifying the Non-Motorized RGS Part Numbers when Ordering


RG	S	10	К —	Α	0500 —	XXX
Prefix RG = Rapid Guide Screw	Frame Style S = Standard W = Wide Sensor Mount Capability	Frame Size Load 10 = 100 lbs (445 N) (Maximum static load)	Coating K = TFE Kerkote	Drive / Mounting A = None B = Inline Screw Motor Mount	Nominal Thread Lead Code 0000 = No Screw 0100 = .100-in (2.54) 0200 = .200-in (5.08) 0500 = .500-in (12.70) 1000 = 1.000-in (2.54)	Unique Identifier Suffix used to identify specific motors or a proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 603 213 6290.

Specifications

	Inch Lead	Thread Lead Code	Nominal Rail Diam.	Nominal Screw Diam.	Typical Drag Torque	Life @ 1/4 Design Load*	Torque-to- Move Load	Design Load*	Screw Inertia
RGS10 Non-Motorized	inch (mm)		inch (mm)	inch (mm)	oz - in (N-m)	inch (cm)	oz-inc/lb (Nm/Kg)	lbs (N)	oz-in-sec²/in (kg-m-sec²/m)
with Lead Screw	.100 (2.54)	0100			5.0 (0.4)		1.3 (.020)		
Screw	.200 (5.08)	0200	1.0	5/8	6.5 (.05)	100,000,000	2.0 (.031)	100 (445)	14.2 x 10-5
	.500 (12.70)	0500	(25.4)	(15.9)	7.0 (.05)	(254,000,000)	3.0 (.047)	100 (443)	(3.9 x 10-6)
	1.000 (25.40)	1000			8.5 (.06)		6.5 (.101)		

NOTE: RGS assemblies with lengths over 36 inches (914.4 mm) and/or leads higher than .5 inch (12.7 mm) will likely have higher drag torque than listed values. *Determined with load in a horizontal position.

RGS10 Non-Motorized, Screw Driven

				, oo.	O D																					
	Α	В	С	D	D1	Е	F	G	Н	I *	K	L1	L2	N	P	Q	R	S	T	U	٧	Х	Υ	Z1	Z2	Z3
inch	1.0	1.75	.312	2.0	2.0	1.32	3.3	2.25	1.25	1/4-20	1.6	1.3	.30	.75	1.5	1.25	1.3	.92	.375	.64	1.83	.88	.28	.26	.50	.22
mm	25.4	44.5	7.93	50.8	50.8	33.5	83	57.1	31.8	UNC	41	33	33	19	38.1	31.8	33	23.4	9.5	16.3	46.5	22.4	7.1	6.6	12.7	5.6

Z2 C BORE SLOT Z3 DEEP

*Metric carriage hole sizes available M3, M4, M5, M6.

Z2 BORE x Z3 DEEP

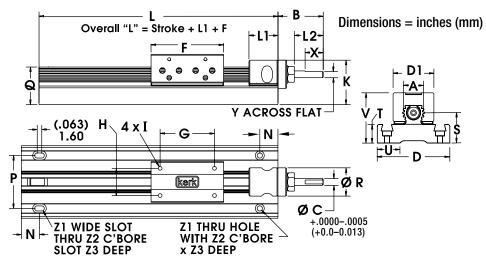
www.haydonkerkpittman.com

.0025" Y (.0635)

.005" Z

(127.0)

(101.6)

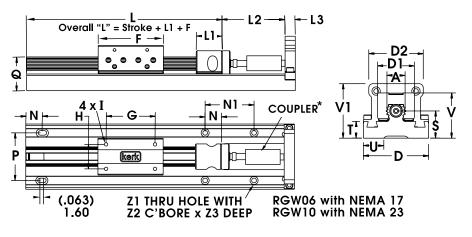

Linear Velocity: in./sec. (mm/sec.)

400

200

Non-Motorized with Lead Screw ensional Drawings

Screw DrivenWide Frame


RGW10 Wide Series, Non-Motorized, Screw Driven

	i i i i		Wido C	, ,	11011 111	OLUTIZO	a, 00101	N DIIVO																	
	1	Α	В	С	D	D1	F	G	Н	I *	K	L1	L2	N	Р	Q	S	T	U	٧	Х	Υ	Z1	Z2	Z3
inc	h 1	1.0	1.75	.312	3.38	2.0	3.3	2.25	1.25	1/4-20	1.9	1.3	1.3	.75	2.6	1.5	1.2	.69	1.3	2.1	.88	.28	.14	.40	.43
mr	n 25	5.4	44.5	7.93	85.7	50.8	83	57.1	31.7	UNC	48	33	33	19	66	39.6	31	17.5	33.8	54.6	22.4	7.11	6.6	10.2	10.9

*Metric carriage hole sizes available M3, M4, M5, M6.

Motor Mount for Non-Motorized with Lead Screw Dimensional

- Motor Mount
- Screw Driven Wide Frame

Dimensions = inches (mm)

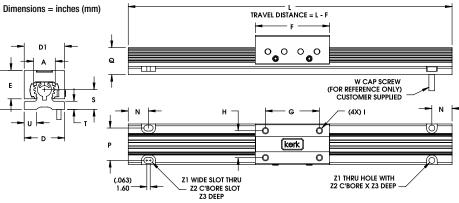
*NOTE: The coupling shown in the dimensional drawing is not included.

RGW10 Motor Mount, Wide Series, Non-Motorized, Screw Driven

	Α	В	С	D	D1	F	G	Н	l*	K	L1	L2	N	P	Q	R	S1	Т	U	٧	Х	Y	Z1	Z2	Z3
inch	0.60	1.25	.1875	2.0	1.13	2.0	1.50	0.750	6-32	1.2	.80	.80	.50	1.46	1.04	.80	.83	.51	.63	1.4	.50	.170	.14	.25	.14
mm	15.2	31.8	4.762	50.8	28.6	50.8	38.1	19.1	UNC	30	20.3	20.3	12.7	37.0	26.4	20.3	21.2	13.0	16.0	36	12.7	4.32	3.6	6.4	3.6

*Metric carriage hole sizes available M3, M4, M5, M6.

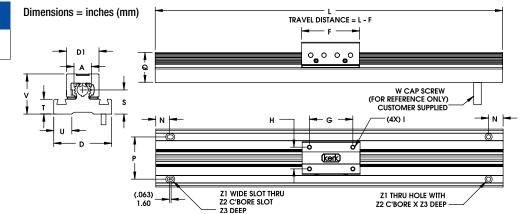
RGW10 Sensor Mount Kits


Sensor mounting kits based on U-channel optical sensor. Each kit includes one flag, three sensor mounts and all mounting hardware. Sensors are not included in the kit and must be ordered separately from sensor manufacturer.

Without Guide Screw

Non-Motorized without Lead Screw

Standard Frame


RGS10 Non-Motorized, Without Screw Driven

	Α	D	D1	E	F	G	Н	I *	N	P	Q	S	T	U	V	Z1	Z2	Z3
inch	1.0	2.0	2.0	1.32	3.3	2.25	1.25	1/4-200	.75	1.5	1.25	.92	.375	.64	1.83	.26	.50	.22
mm	25.4	50.8	50.8	33.5	83	57.1	31.7	UNC	19	38.1	31.8	14	9.5	16.3	46.5	6.6	12.7	5.6

*Metric carriage hole sizes available M3, M4, M5, M6.

Non-Motorized without Lead Screw imensional Drawings

 Without Guide Screw Wide Frame

RGW10 Wide Series, Non-Motorized, Without Screw Driven

	HUVVIO	Wide 3	ciico, ive	יוויוויוויוויוויוויויויויויוי	izcu, wi	tilout ot	JICAN DILAC	111									
	Α	D	D1	F	G	Н	 *	N	P	Q	S	T	U	V	Z1	Z2	Z3
inch	1.0	3.38	2.0	3.3	2.25	1.25	1/4-200	.75	2.6	1.5	1.2	.69	1.3	2.15	.26	.40	.43
mm	25.4	85.7	50.8	83	57.1	31.7	UNC	19	66	39.6	31	17.5	33.8	54.6	6.6	10.2	10.9

*Metric carriage hole sizes available M3, M4, M5, M6.

To determine what is best for your application see the Linear Rail Applications Checklist.

Material Coatings

Kerkite® Polymers

Compounded with lubricants, reinforcements and thermoplastic polymers, Kerkite Polymers are formulated to provide optimum performance in its target conditions and applications.

- Injection molded
- High performance
- Exceptional wear properties

Kerkote® TFE Coating

A dry lubricant, Kerkote will not become dry and paste-like, and does not attract dirt or debris. Kerkote differs from conventional plating and coating because it is soft, more evenly distributed than other lubricants, and decreases erratic drag torques and unpredictable wear.

- Reduces friction
- · Cost effective
- Long term and maintenance free

Kerkote provides the maximum level of self-lubrication, requiring no additional external lubrication or maintenance.

RGW10 with NEMA 23

RGW10 Non-Motorized Linear Rails

- · Screw driven linear rails in wide format
- · Linear rails without screw in wide format

The non-motorized RGW Series features standard wear compensating, anti-backlash driven carriages to ensure repeatable and accurate positioning. All moving surfaces include Kerkite[®] engineered polymers running on Kerkote[®] TFE coating, providing a strong, stable platform for a variety of linear motion applications. Recommended for horizontal loads up to 100 lbs (445 N).

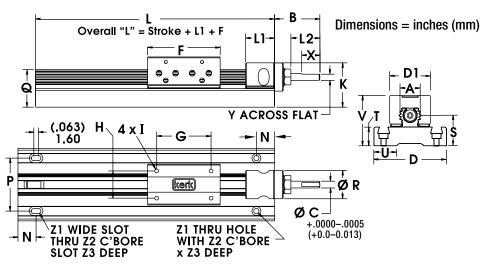
RGW10 Wide Series, Non-Motorized Screw Driven Linear Rail

To determine what is best for your application see the Linear Rail Applications Checklist.

Identifying the Non-Motorized RGW Part Numbers when Ordering

RG	W	10	К _	_ A	0500 —	XXX
Prefix RG = Rapid Guide Screw	Frame Style W = Wide Sensor Mount Capability	Frame Size Load 10 = 100 lbs (445 N) (Maximum static load)	Coating K = TFE Kerkote	Drive / Mounting A = None B = Inline Screw Motor Mount	Nominal Thread Lead Code 0000 = No Screw 0100 = .100-in (2.54) 0200 = .200-in (5.08) 0500 = .500-in (12.70) 1000 = 1.000-in (2.54)	Unique Identifier Suffix used to identify specific motors or a proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 603 213 6290.


Specifications

	Inch Lead	Thread Lead Code	Nominal Rail Diam.	Nominal Screw Diam.	Typical Drag Torque	Life @ 1/4 Design Load*	Torque-to- Move Load	Design Load*	Screw Inertia
RGW10 Non-Motorized	inch (mm)		inch (mm)	inch (mm)	oz - in (N-m)	inch (cm)	oz-inc/lb (Nm/Kg)	lbs (N)	oz-in-sec²/in (kg-m-sec²/m)
with Lead	.100 (2.54)	0100			5.0 (0.4)		1.3 (.020)		
Screw	.200 (5.08)	0200	1.0	5/8	6.5 (.05)	100,000,000	2.0 (.031)	100 (445)	14.2 x 10- ⁵
	.500 (12.70)	0500	(25.4)	(15.9)	7.0 (.05)	(254,000,000)	3.0 (.047)	100 (445)	(3.9 x 10- ⁶)
	1.000 (25.40)	1000			8.5 (.06)		6.5 (.101)		

NOTE: RGW assemblies with lengths over 36 inches (914.4 mm) and/or leads higher than .5 inch (12.7 mm) will likely have higher drag torque than listed values. *Determined with load in a horizontal position.

Non-Motorized with Lead Screw Dimensional Drawings

 Screw Driven Wide Frame

RGW10 Wide Series, Non-Motorized, Screw Driven

	Α	В	С	D	D1	F	G	Н	l*	K	L1	L2	N	P	Q	S	T	U	٧	Х	Υ	Z1	Z2	Z3
inch	1.0	1.75	.312	3.38	2.0	3.3	2.25	1.25	1/4-20	1.9	1.3	1.3	.75	2.6	1.5	1.2	.69	1.3	2.1	.88	.28	.14	.40	.43
mm	25.4	44.5	7.93	85.7	50.8	83	57.1	31.7	UNC	48	33	33	19	66	39.6	31	17.5	33.8	54.6	22.4	7.11	6.6	10.2	10.9

*Metric carriage hole sizes available M3, M4, M5, M6.

Motor Mount for Non-Motorized with Lead Screw Dimensional

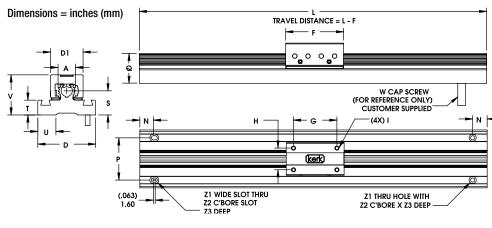
- Motor Mount
- Screw Driven Wide Frame

--L3 Overall "L" = Stroke + L1 + F– N1 COUPLER* **RGW06 with NEMA 17** (.063)**Z1 THRU HOLE WITH**

Dimensions = inches (mm) *NOTE: The coupling shown in the dimensional drawing is not included.

Z2 C'BORE x Z3 DEEP

RGW10 Motor Mount, Wide Series, Non-Motorized, Screw Driven


				,	,		·	.,		••															
	Α	В	С	D	D1	F	G	Н	l*	K	L1	L2	N	Р	Q	R	S1	T	U	V	Х	Υ	Z1	Z2	Z3
inch	0.60	1.25	.1875	2.0	1.13	2.0	1.50	0.750	6-32	1.2	.80	.80	.50	1.46	1.04	.80	.83	.51	.63	1.4	.50	.170	.14	.25	.14
mm	15.2	31.8	4.762	50.8	28.6	50.8	38.1	19.1	UNC	30	20.3	20.3	12.7	37.0	26.4	20.3	21.2	13.0	16.0	36	12.7	4.32	3.6	6.4	3.6

1.60

*Metric carriage hole sizes available M3, M4, M5, M6.

Non-Motorized without Lead Screw Dimensional Drawings

 Without Guide Screw • Wide Frame

RGW10 Wide Series, Non-Motorized, Without Screw Driven

			,		,												
	Α	D	D1	F	G	Н	I *	N	P	Q	S	T	U	V	Z1	Z2	Z3
inch	1.0	3.38	2.0	3.3	2.25	1.25	1/4-200	.75	2.6	1.5	1.2	.69	1.3	2.15	.26	.40	.43
mm	25.4	85.7	50.8	83	57.1	31.7	UNC	19	66	39.6	31	17.5	33.8	54.6	6.6	10.2	10.9

www.haydonkerkpittman.com

Material Coatings

Kerkite® Polymers

Compounded with lubricants, reinforcements and thermoplastic polymers.

- Injection molded
- High performance
- Exceptional wear properties

Kerkote® TFE Coating

A dry lubricant, Kerkote will not become dry and paste-like, and does not attract dirt or debris.

- Reduces friction
- · Cost effective
- · Requires no additional external lubrication or maintenance

Accessory

RGW10 Sensor Mount Kits

Sensor mounting kits based on U-channel optical sensor. Each kit includes one flag, three sensor mounts and all mounting hardware. Sensors are

not included in the kit and must be ordered separately from sensor manufacturer. Part # RGW10SK

^{*}Metric carriage hole sizes available M3, M4, M5, M6.

WGS06 Linear Rails with 43000 Series Hybrid Motor

*Also available with 57000 Series Hybrid Motor (info available starting on page 5)

The Motorized WGS Linear Slide utilizes a screw-driven carriage that offers reliable, continuous linear speed while maintaining accurate positioning. The length and speed of the WGS is not limited by critical screw speed, allowing high RPM, linear speed and long stroke lengths. The WGS slide has a unique, compact profile that provides improved torsional stiffness and stability over RGS and RGW products.

Technical specifications for 43000 Series Size 17 Hybrid Linear Actuator Stepper Motors and Haydon Kerk IDEA™ programmable drives are on page 3, 57000 Series Size 23 specifications are on page 5.

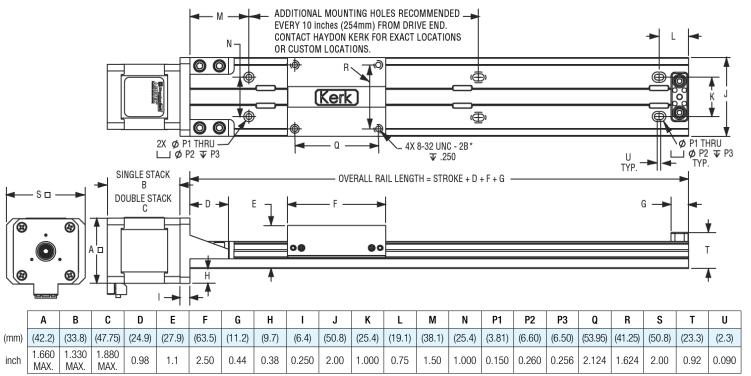
To determine what is best for your application see the Linear Rail Applications Checklist.

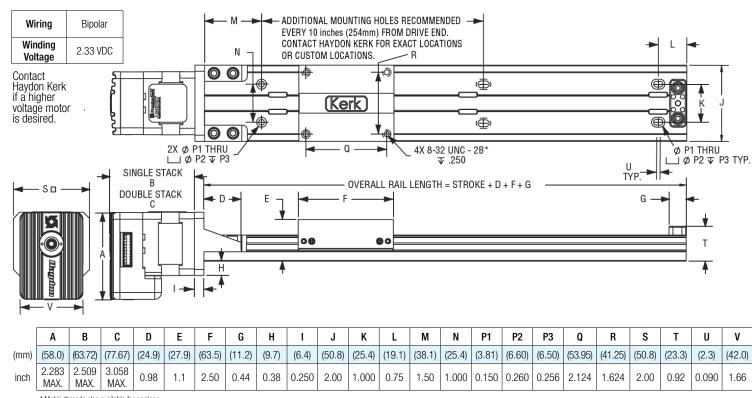
WGS06 with 43000 Series Size 17

hybrid linear stepper motor

Identifying the WGS06 Part Number Codes when Ordering

WG	S	06	К	G	0100	XXX
Prefix	Frame Style	Frame Size Load*	Lubrication	Drive / Mounting	Nominal Thread Lead Code	Unique Identifier
WG = Wide Guide Screw	S = Standard	06 = 35 lbs (156 N) (Maximum static load)	K = TFE Kerkote®	M = Motorized + IDEA TM integrated programmable drive – USB communications J = Motorized + IDEA TM integrated programmable drive – RS485 communications	0100 = .100-in (2.54) 0200 = .200-in (5.08) 0500 = .500-in (12.70) 1000 = 1.000-in (25.4)	- M43 = 43000 Series- Size 17 Motor - G43 = 43000 Series Size 17 Motor with IDEA Drive - M57 = 57000 Series- Size 23 Motor - or a proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.
NOTF: Dashes must be i	included in Part Number (-) as shown abov	e. For assistance call our Engineering Te	am at 603 213 6290.			


Carriage holes available in Metric sizes M3, M4, M5, M6


WGS06 Linear Slide with 43000 Series Size 17 Linear Actuator

Recommended for horizontal loads up to 35 lbs (156 N)

^{*} Metric threads also available for carriage.

...with IDEA™ Drive

www.haydonkerkpittman.com

^{*} Metric threads also available for carriage

Single Stack

■ 43000 Series Size 17

Size 17: 43	mm (1.7-in) l	Hybrid Linear	Actuator (1.8°	Step Angle)	
Wiring		Bipolar		Unipo	olar**
Programmable Drive	IDEA	A Drive option avail	able	Not app	olicable
Winding Voltage	2.33 VDC	5 VDC	12 VDC	5 VDC	12 VDC
Current (RMS)/phase	1.5 A	700 mA	290 mA	700 mA	290 mA
Resistance/phase	1.56 Ω	7.2 Ω	41.5 Ω	7.2 Ω	41.5 Ω
Inductance/phase	1.9 mH	8.7 mH	54.0 mH	4.4 mH	27.0 mH
Power Consumption			7 W		

^{**} Unipolar drive gives approximately 30% less thrust than bipolar drive.

Nominal Thread Lead Lead Code inches mm 0.1 2.54 0100 0.2 5.08 0200 0.5 12.7 0500 1.0 1000 25.4

IDEA™ Drive soπware is simple to use with on-screen puttons

and easy-tounderstand programming guides.

• Fully Programmable RoHS Compliant

 Graphic User Interface Auto-population of Drive Parameters Programmable Acceleration/Deceleration

IDEA™ Drive Data Sheet

and Current Control For more information see the

 USB or RS-485 Communication Microstepping Capability –
 Full, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64

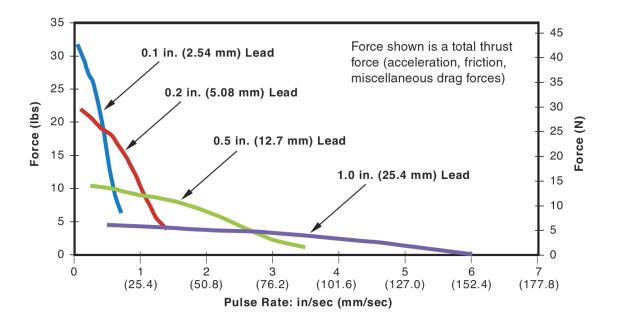
Double Stack

■ 43000 Series Size 17

Size 17 Double Stack: 43 mm	Size 17 Double Stack: 43 mm (1.7-in) Hybrid Linear Actuator (1.8° Step Angle)										
Wiring	Bipolar										
Programmable Drive	IDEA Drive option available										
Winding Voltage	2.33 VDC	5 VDC	12 VDC								
Current (RMS)/phase	2.6 A	1.3 A	550 mA								
Resistance/phase	0.9 Ω	3.8 Ω	21.9 Ω								
Inductance/phase	1.33 mH	8.21 mH	45.1 mH								
Power Consumption	13.2 W										

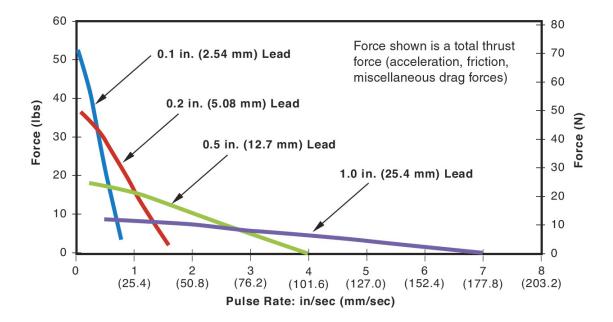
 * 43000 Series Single Stack with IDEA programmable drive. Contact Haydon Kerk if higher voltage motor is desired.

Nominal T	hread Lead	Lead Code		
inches	mm	Leau Coue		
0.1	2.54	0100		
0.2	5.08	0200		
0.5	12.7	0500		
1.0	25.4	1000		


Size 17 External Linear with programmable IDEA Drive

Single Stack

FORCE vs. PULSE RATE


- Chopper - Bipolar - 100% Duty Cycle

Double Stack

FORCE vs. PULSE RATE

- Chopper - Bipolar - 100% Duty Cycle

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply. Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction

0.5 (12.7)

(25.4)

2.5 (63.5)

(50.8)

Single Stack

■ 57000 Series Size 23

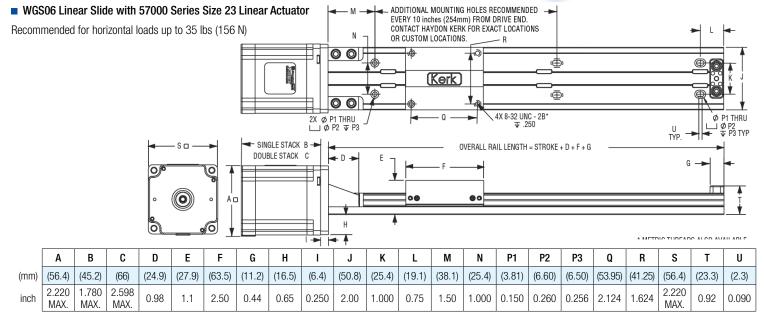
Size 23: 57 mm (2.3-in) Hybrid Linear Actuator (1.8° Step Angle)									
Wiring		Bipolar	Unipolar**						
Winding Voltage	3.25 VDC	5 VDC	12 VDC	5 VDC	12 VDC				
Current (RMS)/phase	2.0 A	1.3 A	.54 A	1.3 A	.54 A				
Resistance/phase	1.63 Ω	3.85Ω	22.2 Ω	3.85Ω	22.2 Ω				
Inductance/phase	3.5 mH	10.5 mH	58 mH	5.3 mH	23.6 mH				
Power Consumption	13 W								

Resistance/phase	1.63 Ω	3.85 Ω	22.2 Ω	3.85Ω	22.2 Ω
Inductance/phase	3.5 mH	10.5 mH	58 mH	5.3 mH	23.6 mH

Nominal Thread Lead Lead Code inches mm 0.1 2.54 0100 0.2 0200 5.08 0.5 12.7 0500 1.0 1000 25.4

** Unipolar drive gives approximately 30% less thrust than bipolar drive.

Double Stack

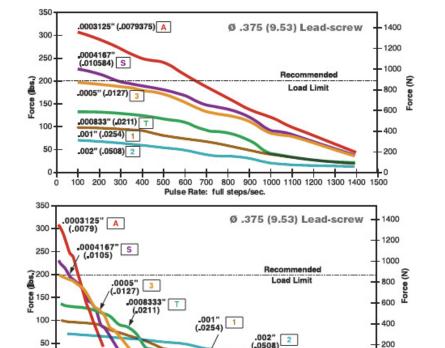

■ 57000 Series Size 23

Size 23 Double Stack: 57 mm (2.3-in) Hybrid Linear Actuator (1.8° Step Angle)									
Wiring	Bipolar								
Winding Voltage	3.25 VDC	5 VDC	12 VDC						
Current (RMS)/phase	3.85 A	2.5 A	1 A						
Resistance/phase	0.98 Ω	2.0 Ω	12.0 Ω						
Inductance/phase	2.3 mH	7.6 mH	35.0 mH						
Power Consumption	25 W Total								

Nominal T	hread Lead	Lead Code		
inches	mm	Leau Goue		
0.1	2.54	0100		
0.2	5.08	0200		
0.5	12.7	0500		
1.0	25.4	1000		

WGS Series • WGS06 Motorized • Size 23 57000 Series • Dimensional Drawings

* Metric threads also available for carriage



Single Stack

FORCE vs. PULSE RATE

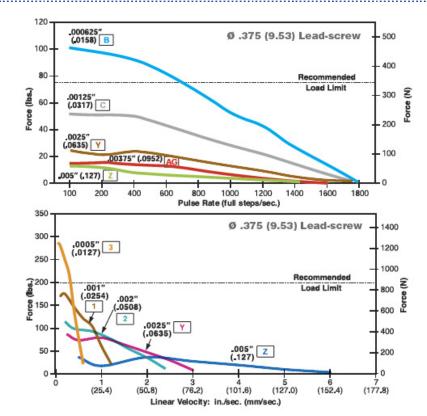
- Chopper - Bipolar - 100% Duty Cycle

1.5 (38.1)

Linear Velocity: in./sec. (mm/sec.)

Double Stack

FORCE vs. LINEAR VELOCITY


- Chopper - Bipolar - 100% Duty Cycle

FORCE vs. PULSE RATE

FORCE vs. LINEAR VELOCITY

- Chopper - Bipolar - 100% Duty Cycle

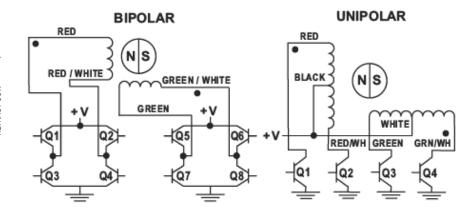
- Chopper - Bipolar - 100% Duty Cycle

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply. Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction

Motorized

Size 17 and 23


■ 43000 Series Size 17 and 57000 Series Size 23

Hybrids: Stepping Sequence

Q2-Q3 Q1-Q4 Q6-Q7 Q5-Q8 Bipolar Q2 Q3 Q4 Unipolar Step ON 0FF ON OFF 0FF 2 OFF ON ON 0FF 0FF ON 3 ON 0FF ON ON 0FF ON OFF ON OFF

Note: Half stepping is accomplished by inserting an off state between transitioning phases.

Hybrids: Wiring

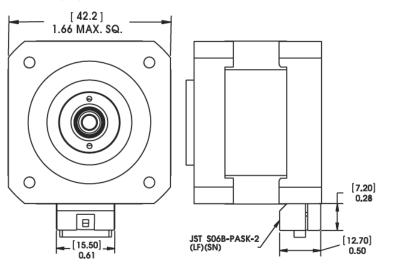
Size 17 43000 Series • Integrated Connectors

Haydon Kerk Hybrid Size 17 Single and Double Stack linear actuators are available with an integrated connector. Offered alone or with a harness assembly, this connector is RoHS compliant and features a positive latch in order for high connection integrity. The connector is rated up to 3 amps and the mating connector will handle a range of wire gauges from 22 to 28. This motor is ideal for those that want to plug in directly to pre existing harnesses. In addition to standard configurations, Haydon Kerk Motion Solutions can custom design this motor to meet your specific application requirements.

JST part # S06B-PASK-2 **Motor Connector:**

Mating Connector:

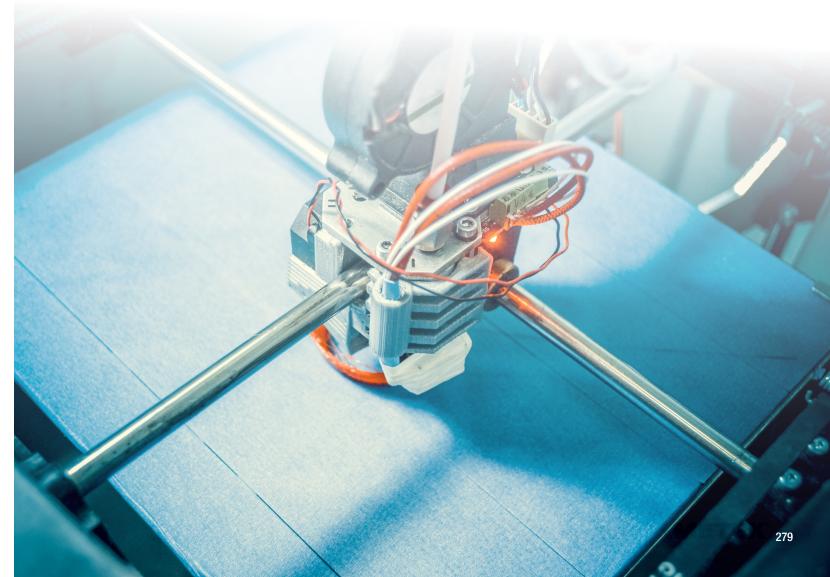
JST part # PAP-06V-S Haydon Kerk Part #56-1210-5 (12 in. Leads)


Wire to Board Connector: JST part number SPHD-001T-P0.5

Pin #	Bipolar	Unipolar	Color
1	Phase 2 Start	Phase 2 Start	G/W
2	Open	Phase 2 Common	-
3	Phase 2 Finish	Phase 2 Finish	Green
4	Phase 1 Finish	Phase 1 Finish	R/W
5	Open	Phase 1 Common	-
6	Phase 1 Start	Phase 1 Start	Red

Dimensional Drawings

■ Integrated Connector with 43000 Series Size 17


Dimensions = (mm) inches

WGS06 Non-Motorized Linear Rails

• Wide, low profile screw driven linear rails

The non-motorized WGS Series features standard wear compensating, anti-backlash driven carriages to ensure repeatable and accurate positioning. All moving surfaces include Kerkite® engineered polymers running on Kerkote® TFE

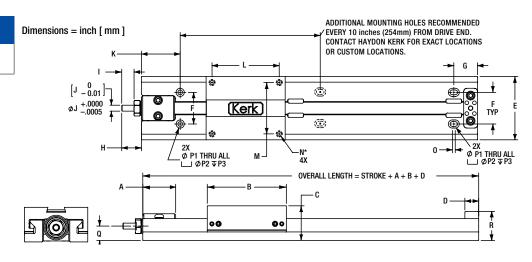
a strong, stable platform for a variety of linear motion applications. Recommended for horizontal loads up to 35 lbs (156 N).

To determine what is best for your application see the Linear Rail Applications Checklist.

Identifying the Non-Motorized WGS Part Numbers when Ordering

WG	S	06	К	A	0100	_ XXX
Prefix WG = Wid Guide Scre	Frame Style S = Standard	Frame Size Load 06 = 35 lbs (156 N) (Maximum static load)	Coating K = TFE Kerkote	Drive / Mounting A = None B = Inline Screw Motor Mount	Nominal Thread Lead Code 0100 = .100-in (2.54) 0200 = .200-in (5.08) 0500 = .500-in (12.70) 1000 = 1.000-in (2.54)	Unique Identifier Suffix used to identify specific motors or a propri- etary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 603 213 6290.


Specifications

	Inch Lead	Thread Lead Code	Nominal Rail Diam.	Nominal Screw Diam.	Typical Drag Torque	Life @ 1/4 Design Load*	Torque-to- Move Load	Design Load*	Screw Inertia
WGS06 Non-Motorized	inch (mm)		inch (mm)	inch (mm)	oz - in (N-m)	inch (cm)	oz-inc/lb (Nm/Kg)	lbs (N)	oz-in-sec²/in (kg-m-sec²/m)
with Lead	.100 (2.54)	0100		3/8 (9.5)	4.0 (0.3)		1.0 (.016)	35 (156)	
Screw	.200 (5.08)	0200			5.0 (.04)	100,000,000	1.5 (.023)		1.5 x 10-5
	.500 (12.70)	0500			6.0 (.04)	(254,000,000)	2.5 (.039)		(4.2 x 10-6)
	1.000 (25.40)	1000			7.0 (.05)		4.5 (.070)		

NOTE: WGS assemblies with lengths over 36 inches (914.4 mm) and/or leads higher than .5 inch (12.7 mm) will likely have higher drag torque than listed values. *Determined with load in a horizontal position.

Non-Motorized with Lead Screw Dimensional Drawings Screw Driven

Wide Frame

WSG06 Wide Series, Non-Motorized, Screw Driven

	Α	В	С	D	E	F	G	Н	ı	J	K	L	M	N*	0	P1	P2	P3	Q	R
inch	1.0	2.5	1.1	.44	2.0	1.0	.75	.63	.39	.187	1.2	2.1	1.62	8-32	.09	.15	.26	.256	.45	.92
mm	25.4	63.5	28	11.2	50.8	25.4	19.1	16	9.9	4.76	39.9	53.9	41.2	UNC-2B	2.3	3.8	6.6	6.5	11.4	23.3

*Metric carriage hole sizes available M3, M4, M5, M6.

Material Coatings

Kerkite® Polymers

Compounded with lubricants, reinforcements and thermoplastic polymers, Kerkite Polymers are formulated to provide optimum performance in its target conditions and applications.

- Injection molded
- High performance
- Exceptional wear properties

Kerkote® TFE Coating

A dry lubricant, Kerkote will not become dry and paste-like, and does not attract dirt or debris. Kerkote differs from conventional plating and coating because it is soft, more evenly distributed than other lubricants, and decreases erratic drag torques and unpredictable wear.

- Reduces friction
- Cost effective
- · Long term and maintenance free

Kerkote provides the maximum level of self-lubrication, requiring no additional external lubrication or maintenance.

LRS04 Motorized Linear Rails with 43000 Series

The LRS Linear Rail System in a variety of configurations, both motorized and non-motorized. These precision linear rail systems consist of a stationary base and a load bearing carriage that travels along a rigid extruded aluminum rail. The LRS Linear Rail System is available with several in-line motor options including a single stack or double stack size 17 stepper motor, a stepper motor with an integral chopper drive, or the IDEATM programmable linear actuator, consisting of the stepper motor, drive, and controller programmed through a graphic user interface (GUI). The LRS is also available without a motor, easily allowing the designer flexibility to integrate with a variety of motor types and belt and pulley configurations.

Key Product Features

- "T" slots integrated into exterior rail bottom and sides that accommodate full length support and various
- Loads easily attach to the compact, moving carriage with four or six M4 x 0.7 size screws.
- Load bearing carriage moves efficiently and smoothly within the internal rail geometry of this specially
- Rail provides end-to-end axial stability and precise motion system accuracy.
- Automatic adjustments of slide bearing play with a patent pending "anti-backlash" linear bearing.
- Rated life equals that of the existing lead-screws of similar size.
- Lead screw end configurations adapt to various rotary motion sources.
- Kerkote® or Black Ice® TFE coatings on a 303 stainless steel lead-screw.
- Designed to Metric global engineering standards.
- For extreme control, LRS can be used with CMP or WDG high-precision anti-backlash nuts, as well as a freewheeling general purpose nut.

To determine what is best for your application see the Linear Rail Applications Checklist.

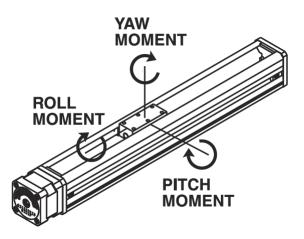
■ Identifying the LRS04 Part Number Codes when Ordering

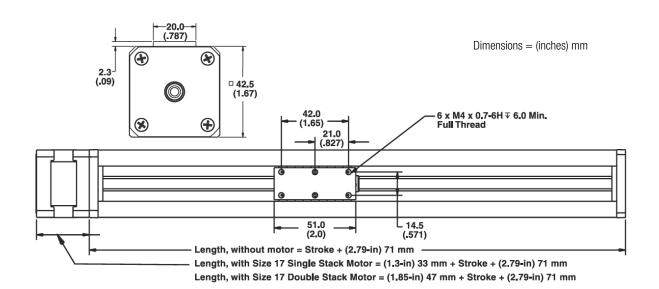
LR	W	04	В —	- M	0025	_ XXX
Prefix	Frame Style	Frame Size Load*	Lubrication	Drive / Mounting	Nominal Thread Lead Code	Unique Identifier
LR = Linear Rail System (LRS)	B = BFW nut C = CMP nut W = WDG nut G = Guide only	04 = 50 lbs (222 N) (Maximum static load)	S = Uncoated B = Black Ice® TFE N = No screw	 A = None M = Motorized 43000 Series Size 17 Hybrid G = Motor with IDEA[™] integrated programmable drive - USB communications J = Motor with IDEA[™] integrated programmable drive - RS485 communications 	0000 = No screw 0025 = .25-in (.635) 0031 = .03125-in (.794) 0039 = .0394-in (1.0) 0050 = .05-in (1.27) 0063 = .0625-in (1.588) 0079 = .0787-in (2.0) 0100 = .01-in (2.54) 0125 = .125-in (3.175) 0197 = .1969-in (5.0) 0250 = .25-in (6.35) 0394 = .3937-in (10.0) 0500 = .5-in (12.7) 0750 = .75-in (19.05) 1000 = 1.0-in (25.4)	Proprietary suffix assigned to a specificcustomer application. The identifier can apply to either a standard or custom part.

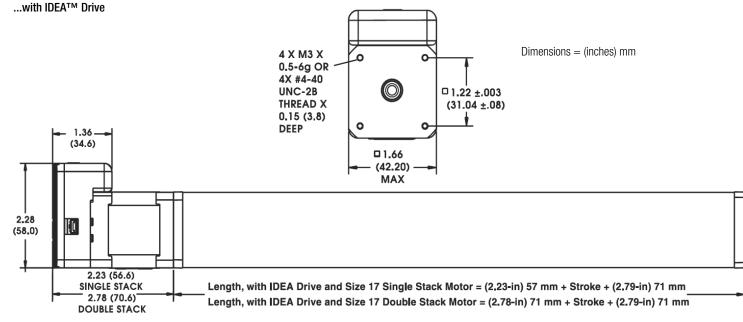
NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 603 213 6290.

Carriage holes available in Metric sizes M3, M4, M5, M6

■ LRS04 Linear Rail with 43000 Series Size 17 Linear Actuator


Recommended for horizontal loads up to 50 lbs (222 N)


Specifications


Width	Length of stroke (max)	Speed (max)	Straight Ilne accuracey	Twist	
1-5/8 in square	40 in	20 in/sec	+/- 0.012 in/ft	+/- 0.25° in/ft	
(4.3 cm square)	(1000 mm)	(0.5 M/sec)	(+/- 1.0 mm/M)	(+/- 0.75° /M)	

Load Ratings (max)

Top load "Z" direction	Hanging / Gantry	Max. Pitch Moment	Max. Moment Roll	Max. Moment Yar
50 lbs. (225 N)	50 lbs. (225 N)	75 in – Ibs (8.5 N – M)	75 in – Ibs (8.5 N – M)	(8.5 N – M)

Motorized

Size 17

Single Stack

43000 Series Size 17

Size 23: 5	57 mm (2.3-in)	Hybrid Linea	r Actuator (1.8	° Step Angle)				
Wiring		Bipolar	Unipolar**					
Programmable Drive	IDEA I	Drive option ava	ailable	Not app	olicable			
Winding Voltage	3.25 VDC	5 VDC	12 VDC	5 VDC	12 VDC			
Current (RMS)/phase	2.0 A	1.3 A	.54 A	1.3 A	.54 A			
Resistance/phase	1.63 Ω 3.85 Ω 22.2 Ω			$3.85~\Omega$	22.2 Ω			
Inductance/phase	3.5 mH	10.5 mH	5.3 mH	23.6 mH				
Power Consumption	13 W							
Rotor Inertia	166 gcm ²							
Insulation Class		Class	B (Class F avai	lable)				
Weight 18 oz (511 g)								
Insulation Resistance	20 MΩ							

* 43000 Series Single Stack with IDEA programmable drive. Contact Haydon Kerk if higher voltage motor is desired.

** Unipolar drive gives approximately 30% less thrust than bipolar drive.

Double Stack

■ 43000 Series Size 17

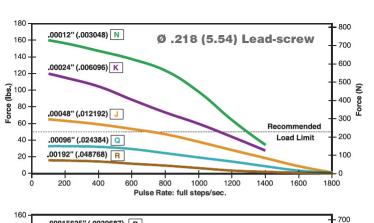
Size 23 Double Stack: 57	mm (2.3-in) Hybrid	d Linear Actuator (1	.8° Step Angle)					
Wiring		Bipolar						
Programmable Drive	IDE	IDEA Drive option available						
Winding Voltage	3.25 VDC	5 VDC	12 VDC					
Current (RMS)/phase	3.85 A	2.5 A	1 A					
Resistance/phase	0.98 Ω	2.0 Ω	12.0 Ω					
Inductance/phase	2.3 mH 7.6 mH 35.0 m							
Power Consumption		25 W Total						
Rotor Inertia		321 gcm ²						
Insulation Class	Cla	iss B (Class F availat	ole)					
Weight		32 oz (958 g)						
Insulation Resistance 20 M Ω								

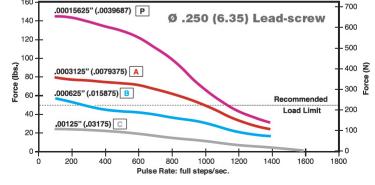
* 43000 Series Single Stack with IDEA programmable drive. Contact Haydon Kerk if higher voltage motor is desired.

** Unipolar drive gives approximately 30% less thrust than bipolar drive.

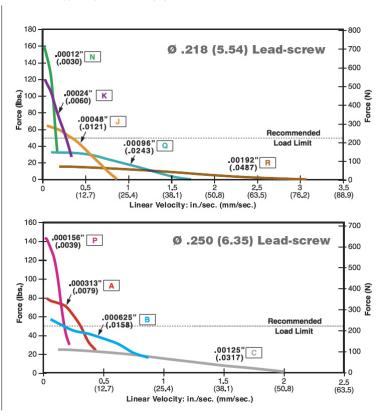
IDEA™ Drive software is simple to use with on-screen buttons and easy-tounderstand programming guides.

- Fully Programmable
- RoHS Compliant
- USB or RS-485 Communication
- · Microstepping Capability -Full, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64
- · Graphic User Interface
- Auto-population of Drive Parameters
- Programmable Acceleration/Deceleration and Current Control

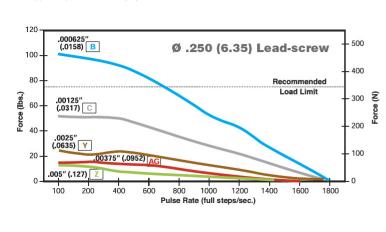

For more information see the IDEA™ Drive Data Sheet

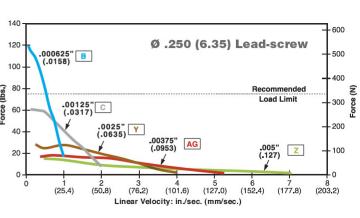


Size 17


Single Stack

FORCE vs. PULSE RATE - Chopper - Bipolar - 100% Duty Cycle





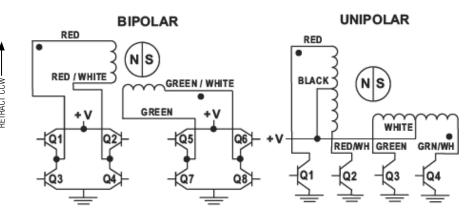
Double Stack

FORCE vs. PULSE RATE - Chopper - Bipolar - 100% Duty Cycle

FORCE vs. LINEAR VELOCITY - Chopper - Bipolar - 100% Duty Cycle

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply. Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

With L/R drives peak force and speeds are reduced, using a unipolar drive will yield a further 30% force reduction


43000 Series Size 17

Hybrids: Stepping Sequence

Hybrids: Wiring

Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8	
Unipolar	Q1	Q2	Q3	Q4]
Step					
1	ON	OFF	ON	OFF	
2	OFF	ON	ON	OFF	
3	OFF	ON	OFF	ON]
4	ON	OFF	OFF	ON	
1	ON	OFF	ON	OFF	
	Unipolar Step 1	Unipolar Q1 Step 1 ON 2 OFF 3 OFF 4 ON	Unipolar Q1 Q2 Step 1 ON OFF 2 OFF ON 3 OFF ON 4 ON OFF	Unipolar Q1 Q2 Q3 Step	Unipolar Q1 Q2 Q3 Q4 Step

Note: Half stepping is accomplished by inserting an off state between transitioning phases.

Size 17 43000 Series • Integrated Connectors

Hybrid Size 17 linear actuators are available with an integrated connector. Offered alone or with a harness assembly, this connector is RoHS compliant and features a positive latch in order for high connection integrity. The connector is rated up to 3 amps and the mating connector will handle a range of wire gauges from 22 to 28. This motor is ideal for those that want to plug in directly to pre existing harnesses. In addition to standard configurations, Haydon Kerk Motion Solutions can custom design this motor to meet your specific application requirements.

JST part # S06B-PASK-2 **Motor Connector:**

Mating Connector:

JST part # PAP-06V-S Haydon Kerk Part #56-1210-5 (12 in. Leads)


Wire to Board Connector: JST part number SPHD-001T-P0.5

Pin #	Bipolar	Unipolar	Color
1	Phase 2 Start	Phase 2 Start	G/W
2	Open	Phase 2 Common	-
3	Phase 2 Finish	Phase 2 Finish	Green
4	Phase 1 Finish	Phase 1 Finish	R/W
5	Open	Phase 1 Common	-
6	Phase 1 Start	Phase 1 Start	Red

Dimensional Drawings

■ Integrated Connector with 43000 Series Size 17

Dimensions = (mm) inches

LRS04 Non-Motorized Linear Rails

• T-slots integrated into exterior rail bottom and sides that accommodate full length support and various mounting options

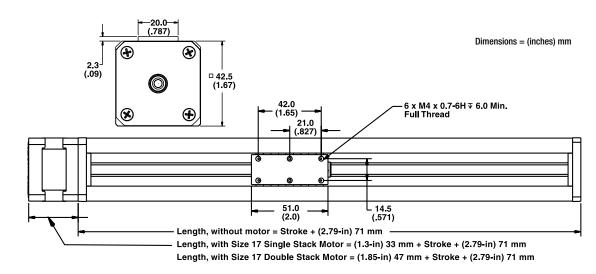
The non-motorized LRS Linear Rail System consists of a stationary base and a

load -bearing carriage that travels along a rigid extruded aluminum rail. Easily allows flexibility to integrate with a variety of motor types, belt and pulley configurations.

Also available with several inline motor options, including a single stack or double stack Size 17 stepper motor, with or without a programmable IDEA™ Drive.

For extreme loads, the LRS04 can be used with CMP or WDG high precision anti-backlash nuts, as well as a freewheeling general purpose nut.

To determine what is best for your application see the Linear Rail Applications Checklist.



Identifying the Non-Motorized LRS Part Numbers when Ordering

LR	W	04	В —	Α	0025	XXX
Prefix LR = Linear Rail System	Frame Style B = BFW Nut C = CMP Nut W = WDG Nut G = Guide only	Frame Size Load 04 = 50 lbs (222 N) (Maximum static load)	Coating S = Uncoated B = Black Ice TFE N = No screw	Drive / Mounting A = None	Nominal Thread Lead Code 0000 = No screw 0025 = 0.25-in (.635) 0031 = 0.3125-in (.794) 0039 = .0394-in (1.0) 0050 = .05-in (1.27) 0063 = .0625-in (1.588) 0079 = 0.079-in (2.0) 0100 = .100-in (2.54) 0125 = 0.125-in (3.175) 0197 = 0.197-in (5.0) 0250 = 0.250-in (6.35) 0394 = 0.3937-in (10.0) 0500 = .500-in (12.70) 0750 = 0.75-in (19.05) 1000 = 1.0-in (25.4)	Unique Identifier Suffix used to identify specific motors or a proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 603 213 6290.

Dimensional Drawings

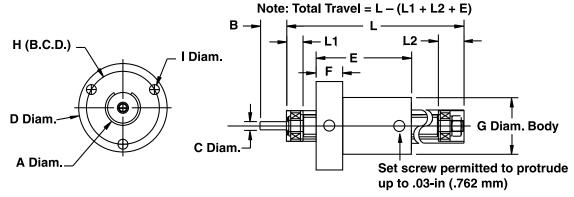
286 **Haydon** kerk

SRA Screw Rail® Linear Actuators

- Coaxial Screw and Rail Guides
- · Recommended anywhere low drag and minimal free play is required

Traditionally, linear motion has required separate components to handle drive, support and guidance. The compact Screw Rail combines all functions in a single, coaxial component.

By eliminating the need for external rail-to-screw alignment, the Screw Rail simplifies the design, manufacture and assembly of motion systems. The coaxial design saves as much as 80% of the space used by a two-rail system and is generally less expensive than the equivalent components purchased separately. An added benefit is the ability to get three-dimensional motion from a single Screw Rail.



Identifying SRA Screw Rail Part Numbers when Ordering

SR	Α	03	К —	Α	0100 —	XXX
Prefix	Nut Style	Nominal Rail Diam.	Coating	Drive / Mounting	Nominal Thread Lead Code	Unique Identifier
SR = Screw Rail	A = Freewheeling	03 = 3/8-in	S = Uncoated K = Kerkote®	A = None	0050 = .05 -in (1.27) SRA03, SRA04	Suffix used to identify specific motors or a proprietary
		(10 mm) 04 * = 1/2-in			0100 = .100-in (2.54) SRA03, SRA06, SRA08	suffix assigned to a specific customer application. The
		(13 mm) 06 * = 3/4-in			0200 = .200-in (5.08) SRA06, SRA08	identifier can apply to either a standard or custom part.
		(19 mm) 08 * = 1-in (25 mm)			0250 = .250-in (6.35) SRA03, SRA04	
		(25 11111)			0375 = .375-in (9.53) SRA03	
					0500 = .500-in (12.70) SRA04, SRA06, SRA08	
					1000 = 1.00-in (25.4) SRA04, SRA06, SRA08	

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 603 213 6290. Right-hand and left-hand assemblies available. *End supports available, see page 2.

Dimensional Drawings

Part N	0.	A Diam.	В	C Diam.	D Diam.	E	F	G Diam.	H (B, C, D)	I	L1	L2
SRA03	inch	.364/.367	.38	.1245/.1250	.98	1.0	.28	.562	.75	.094	.37	.38
Shaus	mm	9.24/9.32	9.56	3.16/3.18	24.9	25.4	7.2	14.3	19.1	2.39	9.4	9.66
SRA04	inch	.489/.492	0.62	.1870/.1875	1.25	1.4	.38	.750	1.03	0.140	0.26	0.36
Shau4	mm	12.42/12.5	15.75	4.75/4.76	31.8	36	9.5	19.1	26.2	3.56	6.6	9.1
SRA06	inch	.739/.742	0.75	.2490/.2495	1.75	2.0	.50	1.120	1.48	0.173	0.38	0.70
SHAUU	mm	18.77/18.85	19.05	6.33/6.34	44.5	51	12.7	28.4	37.6	4.39	9.7	17.8
CDAGO	inch	.989/.992	0.75	.2490/.2495	2.23	2.5	.63	1.495	1.92	0.200	0.48	0.77
SRA08	mm	25.12/25.2	19.05	6.33/6.34	56.6	64	15.9	38.0	48.8	5.08	12.2	19.6

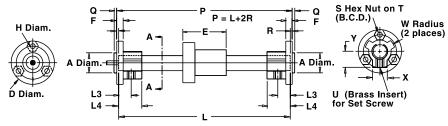
Metric available as requested.

288 **Haydon** kerk

Assembly Option

the Screw Rail can be used to simultaneously lift and rotate (Z-theta motion). With one motor driving the screw and a second rotating the rail, a compact, self-supporting pick and place mechanism can be created.

Non-Motorized


Part No.	Inch	Lead [™]	Thread Lead Code	Nominal Rail Diam.		Nominal Screw Diam.		Max Drag Torque		Design x 1	Life @ 1/4 Design Load x 10 ⁶ (Non Anti-Backlash)		Torque-to-Move Lead		ı Load	Screw inertia per Unit Length		Equivalent Diam*		
	inch	mm		inch	mm	inch	mm	oz-in	NM	inch	cm	oz-in/lb	NM/Kg	lbs	NM	oz-in sec²/in	KgM²/M	inch	mm	
	.050	1.27	0050					1.5	0.014			0.5	0.007							
SRA03	.100	2.54	0100	3/8	10	3/16	5	2.0	0.018	100 to	250 to	1.0	0.016	10	4.5	.1 x	.4 x	30	7.6	
SNAUS	.250	6.35	0250	3/0	10	3/10)	2.5	0.020	150	380	1.25	0.019	10	4.0	10-5	10-6	30	7.0	
	.375	9.53	0375					3.0	0.025			2.0	0.030							
	.050	1.27	0050					2.0	0.015			0.5	0.007							
SRA04	.250	6.35	0250	1/2	13	1/4	6	3.0	0.020	150 to	380 to	1.5	0.023	25	10	.3 x	1.3 x	.39	9.9	
SILAU4	.500	12.7	0500	1/2	13	1/4		4.0	0.030	200	500	2.5	0.039	25	20	10	10-5	10-6	.00	3.3
	1.00	25.40	1000					5.0	0.040			4.5	.0.70							
	.100	2.54	0100					3.0	0.020			1.0	0.016							
SRA06	.200	5.08	0200	3/4	19	3/8	10	4.0	0.030	180 to	450 to	1.5	0.023	50	20	1.5 x	6.5 x	.60	15.2	
Shauu	.500	12.7	0500	3/4	19	3/0	10	5.0	0.040	280	710	2.5	0.039	30	20	10-5	10-6	.00	13.2	
	1.00	25.40	1000					6.0	0.045			4.5	0.070							
	.100	2.54	0100					4.0	0.030			1.0	0.016							
SRA08	.200	5.08	0200	1	25	1/2	13	5.0	0.040	280 to	710 to	1.5	0.023	100	15	5.2 x	20.0 x	.81	20 E	
SNAUG	.500	12.7	0500] '	20	1/2	10	6.0	0.045	320	810	2.5	0.039		─ 100 l		10-5	10-6	.01	81 20.5
	1.00	25.40	1000					8.0	0.060			4.5	0.070							

^{*}Screw Rail stiffness may be modeled using Classical Beam Deflection Theory with equivalent stainless steel beam of diameter given.

Screw Rail® End Supports

- Optional accessory providing convenience of simple and compact mounting
- End Supports slide over the outside diameter of each rail end and "key" off the slot in the Screw Rail

Kerkite® composite polymer End Supports come standard with three hex nuts that are captured in the flange for easy assembly. Also supplied with a brass threaded insert and a set screw to fasten to the outside diameter of the rail.

Dimensions E and L are referenced in the ScrewRail Dimensions VIEW A.

Note: Total Travel = L – (E + 2 [L4])

Identifying Screw Rail End Support Part Numbers when Ordering

	when ord	uning		
SR	04	ES	—	Z00
Prefix	Nominal Size	Accessory		Identifier
SR = Screw	Diameter	ES = End		Standard
Rail	04 = 1/2-in (13 mm)	Support		
	06 = 3/4-in (19 mm)			
	08 = 1-in (25 mm)			

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 603 213 6290.

	A Diam. inch (mm)	D inch (mm)	F inch (mm)	H Diam. inch (mm)	L3 inch (mm)	L4 inch (mm)	Q inch (mm)	R inch (mm)	S inch	T inch (mm)	U inch	W Diam. Brass Insert Inch (mm)	X inch (mm)	Y inch (mm)
SRA04	.624/.626 (15.85/15.90)	1.35 (34.3)	0.200 (5.08)	0.150 (3.81)	0.390 (9.91)	.720 (18.29)	0.080 (2.03)	0.060 (1.52)	#6-32	1.03 (26.2)	#8-32	0.47 (12.0)	0.460 (11.68)	0.500 (12.70)
SRA06	.749/.751 (19.03/19.08)	1.60 (40.6)	0.250 (6.35)	0.173 (4.39)	0.603 (15.32)	0.900 (22.86)	0.100 (2.54)	0.100 (2.54)	#8-32	1.31 (33.3)	#10-32	0.60 (15.3)	0.594 (15.09)	0.645 (16.38)
SRA08	.999/1.001 (25.38/25.43)	2.20 (55.9)	0.375 (9.53)	0.200 (5.08)	0.920 (23.37)	1.200 (30.48)	0.125 (3.18)	0.175 (4.45)	#10-32	1.82 (46.2)	#10-32	0.82 (20.9)	0.800 (20.32)	0.820 (20.83)

www.haydonkerkpittman.com

^{**}Other leads available as custom orders.

^{*}Metric carriage hole sizes available M3, M4, M5, M6.

SRZ Screw Rail® Linear Actuators

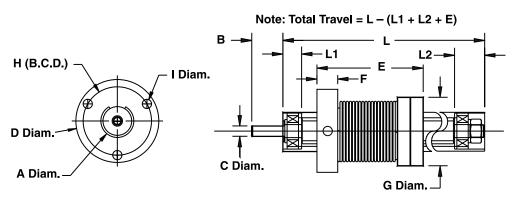
• Coaxial Screw and Rail Guides

Continuous Self-Adjusting Anti-Backlash

Traditionally, linear motion has required separate components to handle drive, support and guidance. The compact Screw Rail combines all functions in a single, coaxial component.

By eliminating the need for external rail-to-screw alignment, the Screw Rail simplifies the

design, manufacture and assembly of motion systems. The coaxial design saves as much as 80% of the space used by a two-rail system and is generally less expensive than the equivalent components purchased separately. An added benefit is the ability to get three-dimensional motion from a single Screw Rail.



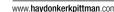
Identifying SRZ Screw Rail Part Numbers when Ordering

SR	Z	06	К	Α	0100 —	XXX
Prefix	Nut Style	Nominal Rail	Coating	Drive /	Nominal Thread Lead Code	Unique Identifier
SR = Screw Rail	A = Anti- Backlash	Diam. 03 = 3/8-in	S = Uncoated K = Kerkote®	Mounting A = None	0050 = .05 -in (1.27) SRZ03, SRZ04	Suffix used to identify specific motors or a proprietary
		(10 mm) 04 * = 1/2-in			0100 = .100-in (2.54) SRZ03, SRZ06, SRZ08	suffix assigned to a specific customer application. The
		(13 mm) $06^* = 3/4$ -in			0200 = .200-in (5.08) SRZ06, SRZ08	identifier can apply to either a standard or custom part.
		(19 mm) 08 * = 1-in			0250 = .250-in (6.35) SRZ03, SRZ04	
		(25 mm)			0375 = .375-in (9.53) SRZ03	
					0500 = .500-in (12.70) SRZ04, SRZ06, SRZ08	
					1000 = 1.00-in (25.4) SRZ04, SRZ06, SRZ08	

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 603 213 6290. Right-hand and left-hand assemblies available.

Dimensional Drawings

Par	No.	A Diam.	В	C Diam.	D Diam.	E	F	G Diam.	H (B, C, D)	I	L1	L2
SRZ03	inch	.364/.367	.38	.1245/.1250	.98	1.1	.28	.73	.75	.094	.37	.38
ShZU3	mm	9.24/9.32	9.56	3.16/3.18	24.9	27.94	7.2	18.5	19.1	*	9.4	9.66
SRZ04	inch	.489/.492	0.62	.1870/.1875	1.31	1.4	.38	.97	1.03	0.140	0.26	0.36
3RZU4	mm	12.42/12.5	15.75	4.75/4.76	33.3	36	9.5	24.7	26.2	*	6.6	9.1
SRZ06	inch	.739/.742	0.75	.2490/.2495	1.81	2.0	.50	1.38	1.48	0.173	0.38	0.70
311200	mm	18.77/18.85	19.05	6.33/6.34	46.0	51	12.7	35.1	37.6	*	9.7	17.8
SRZ08	inch	.989/.992	0.75	.2490/.2495	2.30	2.5	.63	1.72	1.92	0.200	0.48	0.77
ShZuo	mm	25.12/25.2	19.05	6.33/6.34	58.4	64	15.9	43.7	48.8	*	12.2	19.6


*Metric available as requested.

When mounted vertically, the Screw Rail can be used to simultaneously lift and rotate (Z-theta motion). With one motor driving the screw and a second rotating the rail, a compact, self-supporting pick and place mechanism can be created anism can be created.

290 **Haydon kerk** erk

Part No.	Inch Lead		Thread Lead Code	Nominal Rail Diam.		Nominal Screw Diam.		Max Dra	ıg Torque	Forque Life @ 1/4 Design Load x 10 ⁶ (Non Anti-Backlash)		Torque-to-Move Lead		Design Load		Screw inertia per Unit Length		Equivalent Diam*	
	inch	mm		inch	mm	inch	mm	oz-in	NM	inch	cm	oz-in/lb	NM/Kg	lbs	NM	oz-in sec²/in	KgM²/M	inch	mm
	.050	1.27	0050	3/8		3/16		2.0	0.014			0.5	0.007		50	.1 x 10 ⁻⁵			
SRZ03	.100	2.54	0100		10		5	2.5	0.018	50 to 80	130 to	1.0	0.016 0.019	10			.4 x 10 ⁻⁶	30	7.6
ShZUS	.250	6.35	0250	3/0	10			3.0	0.020		200	1.25						30	7.0
	.375	9.53	0375					3.5	0.025			2.0	0.030						
	.050	1.27	0050	1/2		1/4	6	3.0	0.020	75 to 100		0.5	0.007			.3 x 10 ⁻⁵	1.3 x 10 ⁻⁶	.39	
SRZ04	.250	6.35	0250		13			4.0	0.030		190 to	1.5	0.023 0.039 .0.70	25	10				9.9
011204	.500	12.7	0500		10			5.0	0.040		250	2.5		20	10				
	1.00	25.40	1000					6.0	0.045			4.5							
	.100	2.54	0100	3/4		3/8	10	6.0	0.045	90 to 140		1.0	0.016		20	1.5 x 10 ⁻⁵	6.5 x	.60	15.2
SRZ06	.200	5.08	0200		19			6.5	0.047		230 to	1.5	0.023	50 20					
ShZuu	.500	12.7	0500		19	3/0		7.0	0.050		350	2.5			20		10-6		
	1.00	25.40	1000					7.5	0.053			4.5	0.070						
	.100	2.54	0100					8.0	0.057			1.0	0.016						20.5
SRZ08	.200	5.08	0200	1 .	25	1/2	13	8.5	0.060	120 to	350 to	1.5	0.023	100	45	5.2 x	20.0 x	01	
3n200	.500	12.7	0500] '	25			9.0	0.064	160	410	2.5	0.039		45	10-5	10-6	.81	20.5
	1.00	25.40	1000					9.5	0.067			4.5	0.070						

 $^{{}^{\}star}\text{Screw Rail stiffness may be modeled using Classical Beam Deflection Theory with equivalent stainless steel beam of diameter given.}$

^{**}Other leads available as custom orders.

Linear Guide Elements

Spline Shafts and Guide Rails deliver low-cost, low friction and long life for a variety of linear motion control applications.

KERK® SS and SZ Spline shafts are available in stainless steel and can be coated with our proprietary Kerkote® TFE or Black Ice® coatings. Spline Shafts provide anti-rotation for one axis motion or a drive mechanism with rotation for two axes of motion. The bushing is supplied with an integral brass collar to facilitate various mounting configurations without nut distortion.

KERK GR Guide Rail is the perfect choice for light load applications requiring minimal frictional drag, low cost and long wear. It features a burnished, centerless ground stainless steel shaft (available either uncoated or with Kerkote® TFE for additional lubricity) and a graphite and PTFE-filled thermoplastic bushing.

SS and SZ Series Spline Shafts

The Kerk® Spline Shaft (SS/SZ) series spline shaft system has been designed for light to moderate load applications, where low cost, low friction, and long life are primary design considerations. Kerk Spline Shafts provide anti-rotation for one axis motion or a drive mechanism with rotation for two axes of motion. They are excellent alternatives for applications where hex shafts, square shafts and high-cost ball splines are typically used. The assembly consists of a stainless steel spline shaft treated with Haydon Kerk Motion Solutions, Inc. proprietary low friction Kerkote® TFE coating, mated with a Kerkite® composite polymer bushing. The bushing is supplied with an integral brass collar to facilitate various mounting configurations without nut distortion. Standard shaft straightness is .003-in (.08mm/30cm) per foot. Typical radial and torsional clearance between shaft and bushing for a basic assembly (SSA) is .002-in to .003-in (.05-.08mm). An anti-backlash assembly (SZA) is available for applications requiring minimum torsional play. As with other Kerk assemblies, special bushing configurations and end machining configurations are available upon request. Aluminum or carbon steel spline shafts are also available upon request.

GR Series Linear Rails and Bushings

The GR Series linear rail system has been designed for light load applications where low cost, minimum frictional drag and long wear life are primary design considerations. The assembly consists of a centerless ground and burnished stainless steel shaft mated with a Kerkite® composite polymer bushing. The material combinations have been selected so that thermal fluctuations have minimal effect on system performance. Additional lubricity and extended life can be obtained by using a low friction Kerkote® TFE coating on support shafts available in both stainless and alloy steel. Standard shaft straightness is .002in (0.05mm) per foot and typical radial clearance between shaft and bushing is .0005-in (.013mm) on non-coated assemblies and .001-in (.025mm) on Kerkote TFE coated assemblies. Bushings are manufactured with standard retaining ring grooves.

Identifying the Spline Shafts and Guide Rails Part Number Codes when Ordering

SZ	Α	Р	04	1	К -	08	XXX
Prefix	Nut Style	Mounting	Rail Diameter	Number of Bushings per Rail	Lubrication	Length in Inches (Rounded up)	Unique Identifier
SS = Spline Shaft SZ = Anti- Backlash Spline Shaft GR = Guide Rail	A = AssemblyB = Bushing onlyS = Shaft only	T = Threaded (for Spline Shafts only) G = Snap ring groove (for Guide Rails only) P = Plain (no features) S = Shaft only X = Custom	02 = 1/8-in 04 = 1/4-in 06 = 3/8-in 08 = 1/2-in 12 = 3/4-in	0 1 2 3 4 5 Use "0" for Shaft only and "1" if Bushing only	S = Uncoated K = Kerkote® B = Black Ice™ N = Bushing only	Example: 06 = 6-in 08 = 8-in 00 = Bushing only	Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (–) as shown above. For assistance call our Engineering Team at 603 213 6290.

Haydon (kerk)

292

0.250

(6.35)

0.375

(9.53)

0.500

(12.70)

0.750

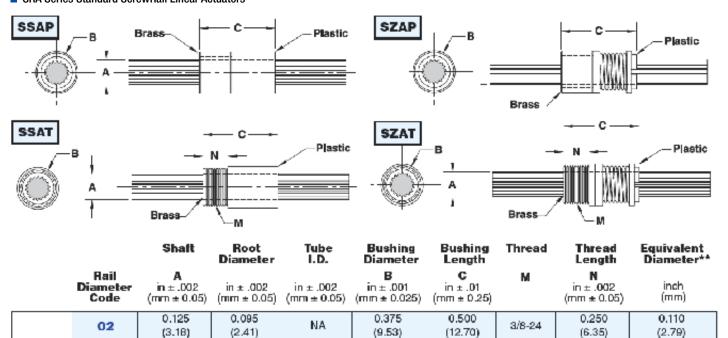
(19.05)

0.202

(5.13)

0.306

(7.77)


0.419

(10.64)

0.630

(16.00)

■ SRA Series Standard ScrewRail Linear Actuators

0.500

(12.70)

0.625

(15.88)

0.813

(20.65)

1.125

(28.58)

NA

NA

NA

NA

0.75

(19.1)

1.00

(25.4)

1.50

(38.1)

2.25

(57.2)

7/16-20

9/16-20

3/4-20

1-16

0.250

(6.35)

0.375

(9.53)

0.500

(12.70)

0.750

(19.05)

0.226

(5.74)

0.341

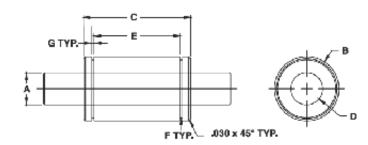
(8.65)

0.458

(11.63)

0.690

(17.53)


■ GR Series Linear Rails and Bushings

04

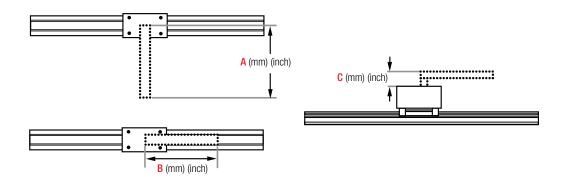
06

12

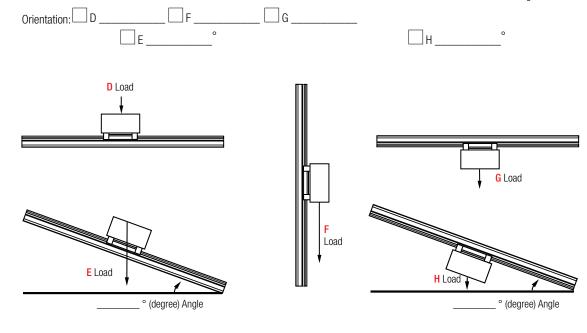
SS/SZ

	Rail Diamete Code	_	Rail Diameter A In±.0006 (mm±0.015)	Rail Diameter w/TFE A in±.0008 (mm±0.015)	Diam. B in±.0006	Length C in±.010	Bushing Inside Diam. D in±.0005 (mm±0.018)	Snap Ring Groove Location E in +.010 in000 (mm + 0.25 (mm - 0.00)	Snap Ring Groove Diam. F in±.004 (mm±0.100)	Groove	Rail Chamfer H in	Radial Load bs (Kg)
GR	04	6/8 10/12	.2475 (6.287)	.2472 (6.279)	.5000 (12.700)	.765 (19.43)	.2485 (6.311)	.535 (13.59)	.450 (11.43)	.040 (1.02)	.020 (.51)	5 (2.3)
	06	6/12 15/18	.3715 (9.436)	.3712 (9.428)	.7500 (19.050)	1.275 (32.39)	.3725 (9.462)	.995 (25.27)	.676 (17.17)	.046 (1.17)	.020 (.51)	10 (4.5)
	08	12/15 18/24	.4965 (12.611)	.4962 (12.603)	1.0000 (25.400)	1.660 (42.16)	.4975 (12.637)	1.330 (33.78)	.900 (22.86)	.046 (1.17)	.020 (.51)	15 (6.8)
	12	18/24 36	.7415 (18.834)	.7412 (18.826)	1.2500 (31.750)	2.036 (51.72)	.7425 (18.860)	1.620 (41.15)	1.125 (28.60)	.058 (1.47)	.030 (.76)	25 (11.4)

294 **Haydon** kerk

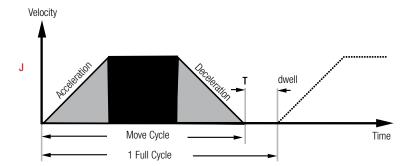


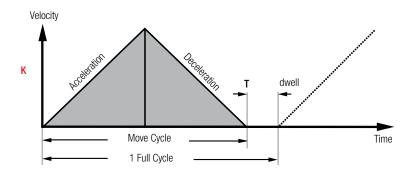
Linear Rail Checklist


Information needed to properly size a linear rail system

Our Linear Rail Systems are designed to be precision motion devices. Many variables must be considered before applying a particular rail system in an application. The following is a basic checklist of information needed that will make it easier for the Haydon Kerk Pittman Engineering Team to assist you in choosing the proper linear rail. See order form on page 4.

١.	Maximum Load?(N	or lbs.)		
2.	Load Center of Gravity (cg) Distance and	Height (mm or inches)? See i	lustrations (A) (B) (C) below.	
	Dimensions: mm or inch	A, or \square B_	and \square C	




3. Rail Mount Orientation? The force needed to move the load is dependent on the orientation of the load relative to the force of gravity. For example, total required force in the horizontal plane (D) is a function of friction and the force needed for load acceleration ($F_f + F_a$). Total force in the vertical plane is a function of friction, load acceleration, and gravity ($F_f + F_a + F_g$).

4. Stroke Length to Move Load? (mm or inches) Overall rail size will be a function of stroke length needed to move the load, the rail frame size (load capability), the motor size, and whether or not an integrated stepper motor programmable drive system is added.

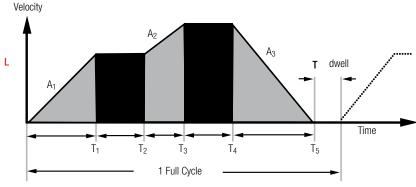
5. Move Profile? A *trapezoidal* move profile divided into 3 equal segments (J) is a common move profile and easy to work with. Another common move profile is a triangular profile divided into 2 equal segments (K).

If using a trapezoidal (J) or triangular (K) move profile, the following is needed.

a. Point to point move distance _____

b. Move time _____ (seconds) including time of acceleration and deceleration

c. Dwell time between moves (seconds)


The trapezoidal move profile (J) is a good starting point in helping to size a system for prototype work.

A *complex* move profile (L) requires more information.

a. Time (in seconds) including: T₁, T₂, T₃, T₄, T₅...T_n and T_{dwell}

b. Acceleration / Deceleration (mm/sec.² or inches/sec.²) including: A₁, A₂, A₃...A_n

6. Position Accuracy Required? (mm or inches)

Accuracy is defined as the difference between the theoretical position and actual position capability of the system. Due to manufacturing tolerances in components, actual travel will be slightly different than theoretical "commanded" position. See M.

7.		Position Repeatability Required? (mm or inches) Repeatability is defined as the range of positions attained when the rail is commanded to approach the same position multiple times under identical conditions. See M.
		M Repeatability Accuracy
8.		Positioning Resolution Required? (mm/step or inches/step) Positioning resolution is the smallest move command that the system can generate. The resolution is a function of many factors including the drive electronics, lead screw pitch, and encoder (if required). The terms "resolution" and "accuracy" should never be used interchangeably.
9.		Closed-Loop Position Correction Required? YES NO In stepper motor-based linear rail systems, position correction is typically accomplished using a rotary incremental encoder (either optical or magnetic).
10.		Life Requirement? (select the most important application parameter)
		a. Total mm or inches, or
		b. Number of Full Strokes, or
		c. Number of Cycles
11.		Operating Temperature Range (°C or °F)
		a. Will the system operate in an environment in which the worst case temperature is above room temperature?
		b. Will the system be mounted in an enclosure with other equipment generating heat?
12.		Controller / Drive Information?
		a. ☐ Haydon Kerk IDEA™ Drive (with Size 17 Stepper Motors only)
		b. Customer Supplied Drive. Type? Chopper Drive L / R Drive
		Model / Style of Drive:
13.	吕	Power Supply Voltage?(VDC)
14.	H	Step Resolution?* a. Full Step b. Half-Step c. Micro-Step
15.	H	Drive Current?* (Arms / Phase) and (Apeak / Phase)
16.		Current Boost Capability?* (%)

*NOTE: If the Haydon Kerk IDEA™ Drive is used with 43000 Series Size 17 linear actuator stepper motor disregard items 14, 15, and 16.

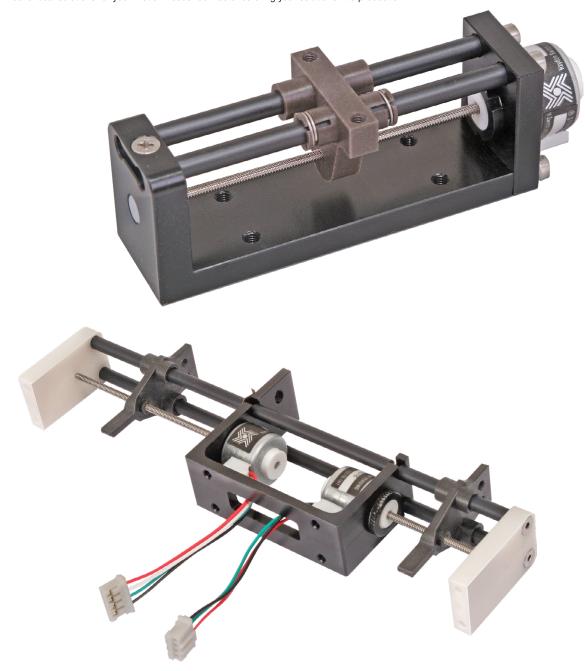
Linear Rail Application Checklist

Upon completion, email to: info.haydonkerk@ametek.com

Nam	ne Company
Addı	ress City State Zip
Cou	ntry Phone Email
1.	Maximum Load? (N or lbs.)
2.	Load Center of Gravity (cg) Distance and Height (mm or inches)? See illustrations (A) (B) (C) below. Dimensions: mm or inches A, or B and C
3.	Rail Mount Orientation? The force needed to move the load is dependent on the orientation of the load relative to the force of gravity. For example, total required force in the horizontal plane (D) is a function of friction and the force needed for load acceleration ($F_f + F_a$). Total force in the vertical plane is a function of friction, load acceleration, and gravity ($F_f + F_a + F_g$). Orientation: D B G H G H G G H G G H G G H G G
4.	Stroke Length to Move Load? (mm or inches)Overall rail size will be a function of stroke length needed to move the load, the rail frame size (load capability), the motor size, and whether or not an integrated stepper motor programmable drive system is added.
5.	Move Profile? A <i>trapezoidal</i> move profile divided into 3 equal segments (J) is a common move profile and easy to work with. Another common move profile is a <i>triangular</i> profile divided into 2 equal segments (K).
	If using a trapezoidal (J) or triangular (K) move profile, the following is needed. a. Point to point move distance (mm or inches) b. Move time (seconds) including time of acceleration and deceleration c. Dwell time between moves (seconds) The trapezoidal move profile (J) is a good starting point in helping to size a system for prototype work.
	A complex move profile (L) requires more information.
	a. Time (in seconds) including: T ₁ , T ₂ , T ₃ , T ₄ , T ₅ T _n and T _{dwell}
	b. Acceleration / Deceleration (mm/sec.² or inches/sec.²) including: A ₁ , A ₁ , A ₁ A _n
6.	Position Accuracy Required? (mm or inches) Accuracy is defined as the difference between the theoretical position and actual position capability of the system. Due to manufacturing tolerances in components, actual travel will be slightly different than theoretical "commanded" position. See M.
7.	Position Repeatability Required? (mm or inches) Repeatability is defined as the range of positions attained when the rail is commanded to approach the same position multiple times under identical conditions. See M .
8.	Positioning Resolution Required? (mm/step or inches/step) Positioning resolution is the smallest move command that the system can generate. The resolution is a function of many factors including the drive electronics, lead screw pitch, and encoder (if required). The terms "resolution" and "accuracy" should never be used interchangeably.
9.	Closed-Loop Position Correction Required? YES NO In stepper motor-based linear rail systems, position correction is typically accomplished using a rotary incremental encoder (either optical or magnetic).
10.	Life Requirement? (select the most important application parameter)
	a
11.	Operating Temperature Range (°C or °F)
	a. Will the system operate in an environment in which the worst case temperature is above room temperature?
	b. Will the system be mounted in an enclosure with other equipment generating heat?
12.	Controller / Drive Information?
	a. ☐ Haydon Kerk IDEA™ Drive (with Size 17 Stepper Motors only)
	b. Customer Supplied Drive. Type? Chopper Drive L / R Drive Model / Style of Drive:
	Power Supply Voltage?(VDC)
14*.	Step Resolution?* a. Full Step b. Half-Step c. Micro-Step
15*.	Drive Current?*(A _{rms} / Phase) and(A _{peak} / Phase)
16*.	Current Boost Capability?* (%)
	*NOTE: If the Haydon Kerk IDEA™ Drive is used with 43000 Series Size 17 linear actuator stepper motor

disregard items 14, 15, and 16.

298 **Haydon kerk** erk


Kerk Kerk

AMETEK Haydon Kerk Pittman Linear Rails and Slides Customization

Haydon Kerk Pittman takes great pride in designing and developing customized solutions for your application needs.

Our Design and Development Engineers begin with our standard catalog products and build ideal solutions for your motion needs. Our factories bring your solutions into production.

To complement the Haydon Kerk® brand of products AMETEK® Advanced Motion Solutions also offers the PITTMAN® brand of DC motor products. Our experienced team of sales engineers will work with you to help you determine the optimum motion solution.

PITTMAN offers a broad range of DC brush and brushless motors with various power ratings, sizes, lengths, and options to meet just about any motion application. In addition to a standard offering of optional components such as drives, encoders, brakes, and gearboxes, motors can be further customized to include unique motor windings, special wire harnesses, EMI/ RFI suppression, shaft modifications, custom output devices such as pinions and worm gears, and just about any other value-added feature to help streamline and simplify your product design and manufacturing.

AMETEK®

AMETEK Haydon Kerk Pittman 1500 Meriden Road Waterbury, CT 06705 USA www.haydonkerkpittman.com